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ABSTRACT. In this paper, we study the Kähler-Ricci soliton on bounded pseudoconvex do-
mains in Cn with C2-boundary. Under certain assumptions, we prove that such solitons reduce
to Kähler-Einstein metrics. Building on Huang and Xiao’s resolution of Cheng’s conjecture,
we further establish an analogous rigidity result for the Bergman Kähler–Ricci soliton. Several
model domains are provided to illustrate our results.

1. INTRODUCTION

In Kähler geometry, a central problem is to find the “best” metric in a given Kähler class. The
Kähler-Einstein metric is widely regarded as a canonical candidate for this problem. Despite
this, not every Kähler manifold admits a Kähler-Einstein metric. To broaden this framework,
Kähler-Ricci solitons generalize Kähler-Einstein metric that consists of a Kähler metric g, a
real holomorphic vector field X and a constant λ ∈ R, satisfying the equation

Ric(g) + LXg = λg.

Moreover, if there exist potential functions f ∈ C∞(M), such that X = 1
2
∇f , we call g a

gradient Kähler-Ricci soliton. A Kähler-Ricci soliton g is said to be trivial if X is a Killing
vector field, in which case g reduces to a Kähler-Einstein metric with Einstein constant λ.
In [Ham88], Hamilton first showed that all compact gradient steady and expanding solitons
are Einstein metrics. Combined with Perelman’s work [Per02], which shows that all compact
solitons are gradient, it follows that there are no non-trivial compact Kähler–Ricci solitons if
the first Chern class of the Kähler manifold is non-positive. On compact Fano manifolds (that
is, Kähler manifolds with positive first Chern class), if there exists a non-trivial Kähler-Ricci
soliton g with a non-trivial real holomorphic vector field X , then the Futaki invariant for X1,0,

F (X1,0) =

∫
M

|X1,0|2ωn
g

is strictly positive. Consequently, the existence of a non-trivial Kähler-Ricci soliton obstructs
the existence of a Kähler-Einstein metric [Fut83].

Perelman’s breakthrough revealed that all steady and expanding solitons must be non-compact.
The compactness assumption is crucial for applying powerful tools such as the ∂∂-lemma
and the maximum principle. This limitation makes the study of canonical metrics on com-
plete K”ahler manifolds significantly less developed compared to their compact counterparts.
Bounded pseudoconvex domains in Cn provide an ideal setting for addressing this gap. These
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domains retain essential geometric features of non-compact Kähler manifolds while being sim-
pler to analyze.

Notably, Mok, and Yau [MY83] showed that a bounded domain carries a Kähler-Einstein
metric if and only if it is pseudoconvex. Despite some progress of significant research for non-
compact gradient Kähler-Ricci soliton ( [FIK03,Cao96,Cao97]), the existence of Kähler-Ricci
solitons remains unexplored on pseudoconvex domains.

In this paper, we study the case of a bounded domain Ω equipped with a complete Kähler
metric with C2-boundary. It is known that a bounded domain in a complex manifold with C1-
boundary admitting a Kähler metric is pseudoconvex [Ohs80]. Our main result is the following:

Theorem 1.1. Let Ω ⊂ Cn be a bounded pseudoconvex domain with C2-boundary, and let g
be a complete Kähler metric on Ω of C1-bounded geometry. Suppose there exists a compact
subset K ⊂⊂ Ω such that

−C1g ≥ Ric(g) ≥ −C2g in Ω \K,

for C2 ≥ C1 > 0. If g is a Kähler-Ricci soliton with a real holomorphic vector field X such
that the dual 1-form of X with respect to g is closed, then g is Kähler-Einstein.

As an important application, based on Huang-Xiao’s proof [HX21] for Cheng’s conjecture,
we have the following analogous statement:

Corollary 1.2. Let Ω be a bounded strictly pseudoconvex domain in Cn with C∞-boundary
and let gB be the Bergman metric. If gB is a Kähler-Ricci soliton, then Ω is biholomorphic to
the ball.

On the compact Kähler manifold with negative first Chern class, i.e. admits a Kähler-Einstein
metric with negative Ricci curvature, it is well known that every Kähler–Ricci soliton is trivial.
In contrast, for complete manifolds such as bounded pseudoconvex domains with C2-boundary,
which always admit a Kähler–Einstein metric—the situation is less clear. An interesting ques-
tion naturally arises from these considerations:

Question 1.3. Does there exist any non-trivial Kähler-Ricci soliton on bounded pseudoconvex
domains with C2-boundary?

Our main result states that if the Ricci curvature of a complete Kähler metric is asymptoti-
cally negative, then the metric cannot admit any soliton structure unless it is Kähler-Einstein.
In fact, if a real holomorphic vector field is the gradient of some potential function, then its dual
1-form is closed. However, the converse is not true due to potential topological obstructions.

Nonetheless, since not all complete Kähler metrics satisfy this asymptotic Ricci curvature
condition (for example, see [KY96] on the boundary behavior of the Bergman metric on pseu-
doconvex domains), one may ask: Can we prove that every Kähler–Ricci soliton on bounded
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pseudoconvex domains with C2-boundary is trivial, or can we construct an example that vio-
lates the assumptions of our main theorem? It is worth noting that many domains equipped
with complete Kähler metrics satisfy our assumptions. In Sections 4–6, we provide detailed
explanations and several examples as applications.

2. PRELIMINARIES

2.1. Notations. Let (Mn, g) be an n-dimensional complete Kähler manifold. In local coordi-
nates (z1, ..., zn), the Kähler metric can be expressed as

g = gij̄dz
idz̄j,

and we will use the Einstein summation convention. Denote the matrix of metric components
by
(
gij̄
)

with the inverse
(
gij̄
)

for 1 ≤ i, j ≤ n, satisfying gkl̄gkj̄ = δlj . For any two tensors
A,B of type (m,n), the Hermitian inner product of A,B with respect to g is defined by

g(A, B̄) := gi1j̄1 · · · ginj̄ngk1 l̄1 · · · gkm l̄mA
k1···km
i1···in Bl1···lm

j1···jn ,

and the norm of A is defined by |A|2 := g(A, Ā).

The Ricci curvature Ric(g) is defined by

Ric(g) = Rij̄dz
idz̄j where Rij̄ = −∂i∂j̄ log (det(gkl̄)) .

And, the scalar curvature R(g) is defined by the trace of the Ricci curvature with respect to g

R(g) = trg (Ric(g)) = gij̄Rij̄,

where ∂i and ∂j̄ are short notations for ∂
∂zi

and ∂
∂zj

respectively.

Let ∇ be the associated Levi-Civita connection of the Kähler metric g. Covariant derivatives
are denoted by

∇i = ∇∂i and ∇j̄ = ∇∂j̄ .

It is remarkable that the covariant derivative ∇i∇j̄ coincides with the partial derivative ∂i∂j̄
when applied to C2 functions, since mixed type Christoffel symbols Γ·

ij̄ vanish. For any C∞

function f : M → R, the gradient vector field of f is defined by

∇f := gij̄∂if · ∂j̄ + gij̄∂j̄f · ∂i.

Let ∇2f :=
(
∂i∂j̄f

)
be the complex Hessian of f , then the Laplacian is defined by the trace of

∇2f with respect to g, that is

∆f := trg
(
∇2f

)
= gij̄∂i∂j̄f.
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2.2. Kähler-Einstein metric and Kähler-Ricci soliton. We say a Kähler metric is Kähler-
Einstein if the Ricci curvature is proportional to the metric, that is

Ric(g) = λg, (2.1)

for some λ ∈ R. By rescaling the metric, we can assume that λ = 1, 0 or −1.

A vector field X is said to be real if X̄ = X , where X̄ is the complex conjugate of X .
Recall that a real holomorphic vector field X is a real vector field such that its (1, 0)-part, that
is X1,0 := X −

√
−1JX is holomorphic for the fixed complex structure J . We say a Kähler

metric g is a Kähler-Ricci soliton if there is an associated real holomorphic vector field X and
a constant λ ∈ R such that

Ric(g) + LXg = λg, (2.2)

where LXg is the Lie derivative of the Kähler metric g along X . Suppose that there exists a C∞

real-valued function f such that X = 1
2
∇f , then we say g is a gradient Kähler-Ricci soliton

and f is the potential function. The assumption of ∇f being a real holomorphic vector field is
equivalent to ∇i∇jf = 0 for all 1 ≤ i, j ≤ n. The Kähler-Ricci soliton is said to be shrinking
if λ > 0, steady if λ = 0, and expanding if λ < 0. Note that if the Lie derivative term vanishes,
the soliton equation (2.2) reduces to the Kähler-Einstein equation (2.1).

2.3. Bounded geometry and Omori-Yau’s maximum principle. To establish our main re-
sult, we first introduce the concept of (quasi-)bounded geometry. Recall that the injectivity
radius at a point x ∈ M is the maximum radius r of the ball Br in the tangent space TxM for
which the exponential map expx : Br → expx(Br) ⊂ M is a diffeomorphism. The injectivity
radius of M is the infimum of the injectivity radius at all points in M .

Definition 2.1. Let (M, g) be a complete Kähler manifold and let k ≥ 0 be an integer. We say
(M, g) has Ck-quasi-bounded geometry if for each non-negative integer l ≤ k, there exists a
constant Cl > 0 such that

sup
M

|∇l Rm | ≤ Cl, (2.3)

where Rm = {Rij̄kl̄} is the Riemann curvature tensor of g and ∇l is the covariant derivative
of order l. Moreover, if (M, g) has a positive injectivity radius, then we say (M, g) has Ck-
bounded geometry.

Next, let us introduce Omori-Yau’s generalized maximum principle on non-compact mani-
folds which serves as a crucial tool in our approach.

Proposition 2.2 ( [Omo67,Yau75]). Let (M, g) be a complete Kähler manifold. Assume that g
has bounded sectional curvature, then for any function u ∈ C2(M) with supM u < +∞, there
exists a sequence of points {zk}k∈N ⊂ M satisfying

(1) lim
k→∞

u(zk) = sup
M

u, (2) lim
k→∞

|∇u(zk)| = 0, (3) lim
k→∞

∇2u(zk) ≤ 0,

where the last inequality holds in the sense of matrices.
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Remark 2.3. If we replace the assumption of bounded sectional curvature in the generalized
maximum principle with bounded Ricci curvature, then (3) is replaced by

(3′) lim
k→∞

∆u(zk) ≤ 0.

3. PROOF OF THEOREM 1.1

Let Ω ⊂ Cn be a bounded pseudoconvex domain with C2-boundary and let g be a complete
Kähler metric on Ω. Suppose that g is a Kähler-Ricci soliton satisfying

Ric(g) + LXg = λg,

for a real holomorphic vector field X and a constant λ ∈ R.

Proposition 3.1. If the Ricci curvature is bounded from below, that is Ric(g) ≥ Cg for some
constant C, then λ < 0.

Proof. We first claim that C < 0. Indeed, if C ≥ 0, then when C > 0, Myers’s theorem implies
that (Ω, g) is compact, which is a contradiction. Moreover, complete manifolds with nonneg-
ative Ricci curvature do not admit positive nonconstant harmonic functions [SY10, Corollary
3.1], so the case C = 0 is also excluded for bounded domains in Cn. Hence, C < 0, and there
exists a point z ∈ Ω such that Ric(g) = −εg at z for some ε > 0 small enough. This implies
that the scalar curvature satisfies R(z) < 0, which would contradict the sharp lower bound
estimates for the scalar curvature of Ricci solitons [Cho23, Theorem 2.14] if λ ≥ 0. □

Since our assumptions ensure that the Ricci curvature is negatively pinched near the bound-
ary, it follows that the Ricci curvature is bounded from below globally. Without loss of general-
ity, we may assume that λ = −1. We now recall the following equation for the scalar curvature
R when λ = −1.

Lemma 3.2 ( [AMR16], Proposition 8.3). Let S := R + n, then

∆S − ⟨X,∇S⟩ − S + |Ric(g) + g|2 = 0. (3.1)

Observe that the scalar curvature attains its minimum only on the boundary, thanks to the
sharp lower bound estimates for Ricci solitons. By applying the generalized maximum princi-
ple to (3.1), we can deduce the asymptotic behavior of the Kähler-Ricci soliton near boundary
points where the scalar curvature reaches its minimum.

Proposition 3.3. Let Ω ⊂ Cn be a bounded pseudoconvex domain with C2-boundary, and let g
be a complete Kähler-Ricci soliton associated with a real holomorphic vector field X such that
|Ric(g)| ≤ K for some constant K > 0. Suppose R(p) = −n for some p ∈ ∂Ω, meaning that
for any sequence {pm} converging to p we have R(pm) → −n. If

|X|(z) ≤ |∇R|−1(z) · d(z, ∂Ω)
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for all z ∈ Ω where d denotes the Euclidean distance, then there exists a sequence pk → p such
that

lim
k→∞

|Ric(g) + g|(pk) = 0.

Proof. For any p ∈ ∂Ω such that R(p) = −n, we may choose a sequence {pk} provided by the
generalized maximum principle. Then it follows from the equation (3.1),

0 ≤ lim
k→∞

∆S(pk) = lim
k→∞

(
⟨∇S,X⟩(pk) + S(pk)− |Ric(g) + g|2(pk)

)
.

Since |X|(pk) ≤ |∇R|−1(pk) · d(pk, ∂Ω), this implies that

0 ≤ lim
k→∞

∆S(pk)

≤ lim
k→∞

d(pk, ∂Ω) + lim
k→∞

S(pk)− lim
k→∞

|Ric(g) + g|2(pk)

≤ − lim
k→∞

|Ric(g) + g|2(pk)

≤ 0.

Thus, we have
lim
k→∞

|Ric(g) + g|(pk) = 0,

which is the conclusion. □

First, we see the following Bochner formula for real holomorphic vector fields.

Lemma 3.4. Assume that g is a complete Kähler metric and X is a real holomorphic vector
field, then we have

∆|X|2 = |∇X|2 − Ric(X,X). (3.2)

Proof. We compute this formula in local coordinates. The assumption of X being real holo-
morphic is equivalent to ∇iXj = 0 for any i, j, and we use the cancellation notation ���∇iXj to
indicate when this property is applied. Let ∇i = gij̄∇j̄ , then we have

∆|X|2 = ∇i∇i

(
Xk ·Xk

)
= ∇i

(
∇iX

k ·Xk +������
Xk · ∇iXk

)
= ∇iXk · ∇iX

k +Xk · ∇i∇iX
k.

Denote the first term by |∇X|2 and commute ∇i with ∇i in the second term, we obtain

∆|X|2 = |∇X|2 +Xk ·
(
−R k

l ·X l +�����∇i∇iXk
)

= |∇X|2 −Rlk̄X
lX k̄

= |∇X|2 − Ric(X,X),

which completes the proof. □

Remark 3.5. On compact Kähler manifolds with negative first Chern class, as a direct conse-
quence of the equation (3.2), there is no non-trivial holomorphic vector field.
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Assume that g is a complete Kähler-Ricci soliton with C1-bounded geometry. Denote Xb =

(Xb)1,0 + (Xb)0,1 the dual 1-form of the real holomorphic vector field X where (Xb)0,1 :=

g(X1,0, ·). If Xb is closed, then for any complex vector field Y, Z, we have

0 = dXb(Y, Z) = (∇YX
b)(Z)− (∇ZX

b)(Y ).

Next, we show that the real holomorphic vector field X is unique up to addition by a constant.
Otherwise, suppose that X and X̃ are two real holomorphic vector fields for g with the same
soliton constant whose dual 1-forms are closed. Setting Y = X−X̃ , then for any 1 ≤ i, j ≤ n,
we deduce: ∇jYi = 0;

∇j̄Yi = 0,

where the first equation follows from the real holomorphicity of Y , and the second equation
follows from the soliton equations of X and X̃ , respectively. Applying gkj̄∇k to the second
equation, we have

0 = gkj̄∇k∇j̄Yi = gkj̄
(
∇j̄∇kYi −Rkj̄il̄Y

l̄
)
= −Ril̄Y

l̄,

which implies Ric(Y, Y ) = 0. Since Ric(g) is negatively pinched outside a compact subset
K ⊂⊂ Ω, it follows that in Ω \K,

0 = Ric(Y, Y ) ≤ −C|Y |2,

for some constant C > 0. Hence, Y = 0 in Ω\K, and by the real analyticity of Y , we conclude
that Y = 0 throughout Ω.

We now proceed to the proof of the main theorem.

Proof of Theorem 1.1. Consider the soliton equation in local coordinates,

Rij̄ +∇iXj̄ +∇j̄Xi = −gij̄. (3.3)

Since Xb is closed, we have
∇iXj̄ = ∇j̄Xi.

Applying gkj̄∇k to both sides of (3.3), we obtain

gkj̄∇kRij̄ + 2gkj̄∇k∇j̄Xi = 0.

By using contracted Bianchi identity and commuting ∇k with ∇j̄ , we deduce that

0 =gkj̄∇kRij̄ + 2gkj̄∇k∇j̄Xi

=∇iR + 2gkj̄
(
�����∇j̄∇kXi −Rkj̄il̄X

l̄
)
,

Therefore,

∇iR = 2Ril̄X
l̄,

or, in a coordinate-free notation

g(∇R, ·) = 2Ric(X, ·). (3.4)
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It is clear that |X| is bounded on the compact subset K ⊂⊂ Ω. So on Ω \ K, we have
−C1g ≤ Ric ≤ −C2g for some constant C1, C2 > 0. Then it follows from (3.4),

g(∇R,X) = 2Ric(X,X) ≤ −2C2|X|2,

which implies

|X|2 ≤ − 1

2C2

g(∇R,X) ≤ 1

2C2

|X| · |∇R|.

Thus, we have

sup
Ω

|X| ≤ max

{
max
K

|X|, supΩ |∇R|
2C2

}
< +∞,

thanks to g has C1-bounded geometry.

Substitute X into the soliton equation, we obtain

Ric(X,X) + LXg(X,X) = −|X|2.

Observe that LXg(X,X) = ∇X |X|2, we then have

Ric(X,X) = −∇X |X|2 − |X|2.

Replacing the Ricci curvature in (3.2) with the above expression, we get

∆|X|2 = |∇X|2 +∇X |X|2 + |X|2 ≥ ∇X |X|2 + |X|2.

Since supΩ |X| < +∞, by the generalized maximum principle, there exists a sequence {zk}
such that

0 ≥ lim
k→∞

∆g|X|2(zk) ≥ lim
k→∞

∇X |X|2(zk) + lim
k→∞

|X|2(zk) = sup
Ω

|X|2 ≥ 0,

which forces |X| = 0. Therefore, g is Kähler-Einstein. □

Remark 3.6. Note that the assumption that Xb is closed does not imply that X is the gradi-
ent of a potential function. In the case of a gradient Kähler-Ricci soliton, one can apply the
generalized maximum principle to the PDE

∆f − |∇f |2 − f = 0,

for the potential function f , to deduce that f = 0, using the boundedness of f .

4. TWO KÄHLER METRICS ON STRICTLY PSEUDOCONVEX DOMAINS

4.1. The Bergman metric. Let Ω be a bounded strictly pseudoconvex domain in Cn and let
A2(Ω) be the space of holomorphic functions in L2(Ω). Clearly, A2(Ω) is a Hilbert space. The
Bergman kernel K(z) on Ω is a real analytic function given by

K(z) =
∞∑
j=1

|φj(z)|2, ∀z ∈ Ω,
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where {φj}∞j=1 is an orthonormal basis of A2(Ω) with respect to the L2 inner product. Since
the Bergman kernel is positive and independent of the choice of any orthonormal basis [Kra01]
on bounded domains, we can define an invariant metric on Ω called the Bergman metric by

gB := gij̄dz
idz̄j with gij̄ = ∂i∂j̄ logK.

The Bergman metric is a complete, real analytic Kähler metric, with its real analyticity in-
herited from the Bergman kernel. On strictly pseudoconvex domains with C∞ boundary, the
sectional curvature of the Bergman metric is asymptotic to a negative constant, and the metric
has C∞-bounded geometry [GKK11]. Moreover, due to the boundary behavior of the Ricci
curvature of gB [KY96, Corollary 2], there exists a compact subset K ⊂⊂ Ω such that Ric(gB)
is bounded and strictly negative outside K.

Let G := det
(
gij̄
)

denote the determinant of the Bergman metric. The Bergman invariant
function B(z) := G(z)/K(z), introduced by Bergman in [BS51], is invariant under any bi-
holomorphic map between two domains. A notable result by Diederich [Die70] asserts that as
one approaches the boundary of a strictly pseudoconvex domain, B(z) tends to (n+1)nπn/n!.
Furthermore, it was shown in [FW97] that if B(z) is constant throughout Ω, then the Bergman
metric is Kähler-Einstein.

Proposition 4.1. Let Ω be a bounded strictly pseudoconvex domain with C∞-boundary. Then
the Bergman metric is a Kähler-Ricci soliton if and only if there exists f ∈ C∞(Ω) up to the
addition of a pluriharmonic function such that B = ef on Ω.

Proof. The “if” part is straightforward. Assuming B = ef and applying
√
−1∂∂̄ to both sides

immediately yields the soliton equation.

We now prove the “only if” part. Let ωB be the Kähler form for the Bergman metric. Assume
there is a real holomorphic vector field, such that

Ric(ωB) + LXωB = −ωB.

Since LXωB is real and closed (1, 1)-form, by the local ∂∂̄-lemma (see, e.g., [Mor07, Propsition
2.8]), there is an open subset U ⊂ Ω and a real function f ∈ C∞(U) such that LXωB|U =√
−1∂∂̄f . Thus, on U we have

Ric(ωB) +
√
−1∂∂̄f = −ωB,

and additionally,
√
−1∂∂̄ (logB − f) = 0 on U.

Hence, there exists a pluriharmonic function h such that B = ef+h := ef̃ on U where f̃ :=

f + h. Since both B and f̃ are real-analytic, the equality B = ef̃ extends to the whole Ω

uniquely, which completes the proof.

In fact,

Ric(ωB) +
√
−1∂∂̄f̃ = −ωB



10 ZEHAO SHA

is analytic on U , which must also hold on Ω. This shows that the Bergman metric is a gradient
Kähler-Ricci soliton. □

It was conjectured by S.-Y. Cheng [Che79] that if the Bergman metric of a bounded strictly
pseudoconvex domain with C∞-boundary is Kähler–Einstein, then the domain is biholomor-
phic to the ball. In [HX21], Huang and Xiao provided an affirmative answer to Cheng’s con-
jecture.

Theorem 4.2 ( [HX21], Theorem 1.1). The Bergman metric of a bounded strictly pseudocon-
vex domain Ω with C∞-boundary is Kähler-Einstein if and only if the domain is biholomorphic
to the ball.

By combining Theorem 4.2 with Theorem 1.1, we immediately deduce the following:

Corollary 4.3. Let Ω ⊂ Cn be a bounded strictly pseudoconvex domain with C∞-boundary
and let gB be the Bergman metric. If gB is a Kähler-Ricci soliton, then Ω is biholomorphic to
the ball.

4.2. The complete Kähler metric given by a defining function. For the remaining part of
this section, we assume that Ω admits a Ck+2, k ≥ 5, defining function ρ such that ρ = 0,
dρ ̸= 0 on ∂Ω,

(
ρij̄
)
> 0 on Ω and Ω = {ρ < 0}, where ρij̄ := ∂i∂j̄ρ. Let ϕ = − log(−ρ),

we can define another complete Kähler metric on Ω of Ck−2-bounded geometry introduced
in [CY80], that is

gρ := gij̄dz
idzj where gij̄ := ∂i∂j̄ϕ.

A direct computation gives

gij̄ =
ρij̄
−ρ

+
ρiρj̄
ρ2

, gij̄ = (−ρ)

(
ρij̄ +

ρiρj̄

ρ− |dρ|2

)
and

det
(
gij̄
)
=

(
−1

ρ

)n

det

(
ρij̄ −

ρiρj̄
ρ

)
=

(
1

ρ

)n+1

det
(
ρij̄
) (

−ρ+ |dρ|2
)
,

where ρi = ∂iρ,
(
ρij̄
)
=
(
ρij̄
)−1, ρi = ρij̄ρj̄ and |dρ|2 = ρij̄ρiρj̄ . A straightforward conse-

quence from these computations shows gρ is complete.

The Ricci curvature Ric(gρ) is given by

Rij̄ = −∂i∂j̄ (log (det (gkl̄)))

= −(n+ 1)gij̄ − ∂i∂j̄ log
[
det (ρkl̄)

(
−ρ+ |dρ|2

)]
.
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Note that det (ρkl̄) (−ρ+ |dρ|2) is a positive Ck−2 function defined on Ω̄. It can be computed
that

∂i∂j̄ log
[
det (ρkl̄)

(
−ρ+ |dρ|2

)]
is a tensor whose norm tends to 0 near the boundary, so the Ricci curvature asymptotically
tends to −(n+ 1). Therefore, we have the following:

Corollary 4.4. Let Ω be a bounded strictly pseudoconvex domain in Cn with Ck-boundary for
k ≥ 5 and let gρ be the complete Kähler metric defined above. Suppose that gρ is a Kähler-
Ricci soliton, then gρ is the unique Kähler-Einstein metric on strictly pseudoconvex domains
constructed by Cheng-Yau.

5. THE BERGMAN METRIC ON UNIFORMLY SQUEEZING DOMAINS

The uniform squeezing property was introduced by Liu et al. [LSY05] and by Yeung [Yeu09]
independently in order to study canonical invariant metrics on complex manifolds.

Definition 5.1. A complex manifold M of dimension n is called uniformly squeezing if there
exists 0 < r < R such that for any p ∈ M , there is a holomorphic map fp : M → Cn satisfying

(1) fp(p) = 0;

(2) fp : M → fp(M) is biholomorphic;

(3) Br ⊂ fp(M) ⊂ BR, where Br and BR are Euclidean balls in Cn with radius r and R

centred at 0.

It is known that all bounded homogeneous domains, bounded domains that are covers of
compact Kähler manifold, and strongly convex domains with C2-boundary satisfy the uni-
formly squeezing property. It was proved in [Yeu09] that uniformly squeezing domains equipped
with the Bergman metric or Kähler-Einstein metric have C∞-bounded geometry and thus, the
Ricci curvature is bounded.

In [DGZ12], Deng-Guan-Zhang introduced the concept of the squeezing function to study
the geometric and analytic properties of uniformly squeezing domains.

Definition 5.2. Let Ω be a bounded domain in Cn. For any z ∈ Ω and any holomorphic
embedding f : Ω → B1 with f(z) = 0, we set

sΩ(z, f) := sup{r;Br ⊂ f(Ω)}.

The squeezing function of Ω is defined by

sΩ(z) := sup
f
{sΩ(z, f)}.

By definition, we see that 0 ≤ sΩ(z) ≤ 1 and sΩ(z) admits a positive lower bound if and
only if Ω is uniformly squeezing. In [Zha15], Zhang established the curvature estimate of the
Bergman metric in terms of the squeezing function.
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Theorem 5.3 ( [Zha15], Theorem 1.1). Let Ω be a bounded domain in Cn and let sΩ be the
squeezing function. Denoting H(z,W ), Ric(z,W ) and R(z) by the holomorphic sectional
curvature, the Ricci curvature and the scalar curvature at z in the direction W , respectively.
Then we have

2− 2
n+ 2

n+ 1
s−4n
Ω (z) ≤ H(z,W ) ≤ 2− 2

n+ 2

n+ 1
s4nΩ (z)

(n+ 1)− (n+ 2)s−2n
Ω (z) ≤ Ric(z,W ) ≤ (n+ 1)− (n+ 2)s2nΩ (z),

n(n+ 1)− n(n+ 2)s−2n
Ω (z) ≤ R(z) ≤ n(n+ 1)− n(n+ 2)s2nΩ (z).

Thanks to the curvature estimate, we see that if the squeezing function is close to 1 outside
a compact subset K ⊂⊂ Ω, then the Ricci curvature is strictly negative on Ω \ K. We can
conclude the following:

Corollary 5.4. Let Ω be a bounded domain in Cn and let sΩ be the squeezing function. Suppose
there exists 0 < ε < 1 such that (

n+ 1 + ε

n+ 2

) 1
2n

≤ sΩ ≤ 1,

in Ω \ K for some compact subset K ⊂⊂ Ω. If gB is a Kähler-Ricci soliton, then gB is
Kähler-Einstein.

It was proven in [DGZ16] that if Ω is a bounded strictly pseudoconvex domain with C2-
boundary, then limz→∂Ω sΩ(z) = 1. Conversely, this statement is not always true, and we refer
the interested reader to see [FW18] for a counterexample. In [Zim18], Zimmer proved that
for a bounded convex domain Ω with C∞-boundary, if limz→∂Ω sΩ(z) = 1, then Ω is strictly
pseudoconvex.

6. EXAMPLE OF MODEL DOMAINS

6.1. Thullen domain in C2. The Thullen domain

Ωm := {(z, w) ∈ C2; |z|2 + |w|2m < 1}

is a bounded pseudoconvex domain in C2 for any m ≥ 1 with all boundary points are strictly
pseudoconvex away from the boundary part {|z| = 1}.

If m = 1, the Thullen domain becomes the ball. For m > 1, we observe that − log(1−|z|2−
|w|2m) is not strictly plurisubharmonic and therefore gij̄ = −∂i∂j̄ log(1− |z|2− |w|2m) is not a
Kähler metric. Instead, we consider another defining function ρ(z, w) = (1− |z|2)1/m − |w|2,
and the corresponding complete Kähler metric given by ρ introduced in [Seo12] is

gm(z, w) = −∂i∂j̄ log ρ(z, w).

The specific expression of gm is

(1− |z|2) 1
m
−2

mρ2

(
ρ+ 1

m
|z|2|w|2 wz(1− |z|2)

wz(1− |z|2) m(1− |z|2)2

)
,
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and the determinant of gm is

G := det gm =
1
m

(
1− |z|2

) 2
m
−2

ρ3
.

Then the Ricci curvature Ric(gm) = −∂i∂j̄ logG is computed by

Ric(gm) = −3(1− |z|2) 1
m
−2

mρ2

(
2
3
(m− 1)ρ2(1− |z|2)− 1

m + ρ+ 1
m
|z|2|w|2 wz(1− |z|2)

wz(1− |z|2) m(1− |z|2)2

)
.

It is clear that gm is Kähler-Einstein if and only if m = 1. By a straightforward computation,
we can see the following.

Proposition 6.1. Suppose gm is a Kähler-Ricci soliton, then m = 1.

Proof. Assume gm is a Kähler-Ricci soliton associated with a real holomorphic vector field
X = X i∂i +X

i
∂i where X i is a holomorphic function, that is

Rij̄ +∇iXj̄ +∇j̄Xi = λgij̄, (6.1)

for some constant λ and i, j = 1 or 2. We then compute

∇iXj̄ +∇j̄Xi = Xk∂kgij̄ +X
l
∂l̄gij̄ + ∂iX

kgkj̄ + ∂j̄X
l
gil̄.

First, fixing i = j = 1. Denote ∂1 = ∂z, ∂2 = ∂w, we have

Xk∂kg11̄ =X1∂1g11̄ +X2∂2g11̄

=
X1z

m3ρ3 (1− |z|2)3−
1
m

(
2m2

(
1− |z|2

) 2
m + ((1−m) |z|2 + 2m2 − 2m)|w|4

+
(
1− |z|2

) 1
m
(
(m+ 1) |z|2 − 4m2 + 2m

)
|w|2

)
+

X2w

m2ρ3 (1− |z|2)2−
1
m

((
|z|2 −m

)
|w|2 +

(
1− |z|2

) 1
m
(
|z|2 +m

))
,

and

∂iX
kgkj̄ =∂1X

1g11̄ + ∂1X
2g21̄

=
ρ+ 1

m
|z|2|w|2

mρ2(1− |z|2)2− 1
m

· ∂1X1 +
zw

mρ2(1− |z|2)1− 1
m

· ∂1X2.



14 ZEHAO SHA

By combining the above computations and rearranging all terms in (6.1), we obtain

2(m− 1)ρ2(1− |z|2)−
1
m + (3 + λ)

(
ρ+

1

m
|z|2|w|2

)
=

X1z +X
1
z

m2 (1− |z|2) ρ

(
2m2

(
1− |z|2

) 2
m + ((1−m) |z|2 + 2m2 − 2m)|w|4

+
(
1− |z|2

) 1
m
(
(m+ 1) |z|2 − 4m2 + 2m

)
|w|2

)
+

X2w +X
2
w

mρ

((
|z|2 −m

)
|w|2 +

(
1− |z|2

) 1
m
(
|z|2 +m

))
+

(
ρ+

1

m
|z|2|w|2

)(
∂1X

1 + ∂1̄X
1
)
+
(
1− |z|2

) (
∂1X

2wz + ∂1̄X
2
wz
)
.

(6.2)

Then, we take partial derivatives with respect to w and w twice
(
that is, applying ∂2

2∂
2
2̄

)
to both

sides of (6.2). By evaluating at (z, 0), we get

4|z|2

m(1− |z|2)

(
X1z +X

1
z
)
+ |z|2

(
∂2X

2 + ∂2̄X
2
)
= 4m(m− 1). (6.3)

Next, fixing i = j = 2. By taking the same approach as in the above computations, we have

4
(
X1z +X

1
z
)
+m(1− |z|2)

(
∂2X

2 + ∂2̄X
2
)
= 0, (6.4)

which implies

∂2X
2 + ∂2̄X

2
= − 4

m(1− |z|2)

(
X1z +X

1
z
)
. (6.5)

If ∂2X2 + ∂2̄X
2 ̸= 0, then plugging (6.5) into (6.3), we obtain

4m(m− 1) = 0,

which yields m = 1, since m ≥ 1.

If ∂2X2 + ∂2̄X
2
= 0, from (6.4), we have X1z + X

1
z = 0. Then, plugging into (6.3), we

still have m = 1. □

Remark 6.2. By the expression of Ric(gm), we can see that Ric(gm) is negatively pinched in
Ωm. Thus, Proposition 6.1 can be deduced from Theorem 1.1 directly.

We now consider the Bergman metric on the Thullen domain. The Bergman kernel of the
Thullen domain Ωm is given by

K(z, w) =
mπ2

m+ 1
· (m+ 1) (1− |z|2)

1
m − (m− 1)|w|2

(m+ 1)ρ3 (1− |z|2)2−
1
m

.

The Bergman metric gB can then be computed. An interesting fact between the two metrics gm
and gB on the Thullen domain is that they only coincide when Ωm is the ball, that is m = 1.

Proposition 6.3. Let gB = λgm for some λ > 0, then m = 1.
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Proof. Assume gB = λgm for some λ > 0, then for some pluriharmonic functions h, we have

logK + λ log ρ = h. (6.6)

Since the left-hand side of (6.6) only depends on |z| and |w|, so does the right-hand side. Then
by the maximum principle, we obtain that h = C for some constant C. Evaluating at the origin,
we get C = log

(
mπ2

m+1

)
.

Thus, we have

(m+ 1) (1− |z|2)
1
m − (m− 1)|w|2

(m+ 1)ρ3−λ (1− |z|2)2−
1
m

= 1, (6.7)

which implies that the left-hand side of (6.7) is independent of the value of z and w. When
we approach the boundary, namely |z|2 + |w|2m → 1, we note that the numerator of (6.7) does
not always vanish, whereas the denominator always vanishes if λ ̸= 3. That forces λ = 3. Let
(z, w) → (0, 1) ∈ ∂Ωm, we can verify that m = 1. □

As a significant example, the following computation verifies the recent work of Savale-Xiao
[SX23] regarding Yau’s question on bounded pseudoconvex domains with C∞-boundary of
finite type in dimension two.

Proposition 6.4. The Bergman metric gB is Kähler-Einstein if and only if m = 1.

Proof. The “if” part follows from the case of the ball. For the “only if” part, we use the same
notations as in [AS83]. It is enough to show this at (0, w) with |w| < 1. Let

t =
1− |w|2

1− r|w|2
, |w| < 1,

where r = (m−1)/(m+1). We note that 0 ≤ r < 1 and 0 < t ≤ 1. Then the Bergman metric
is given by

g(0, w) =

(
α/(1 + r)t 0

0 β(1− rt)2/(1− r)2t2

)
and the Ricci curvature of the Bergman metric is given by

Ric(0, w) =

(
3α2β−4Aβ−2Bα

αβ(1+r)t
0

0
(1−rt)2(3αβ2−4Cα−2Bβ)

αβ(1−r)2t2

)
,

where 
α = 3 + rt2, β = 3− rt2,

A = 6 + 4rt2 + (1 + r)rt3,

B = 2 (9 + 3rt2 − 3(1 + r)rt3 + 2r2t4) / (3 + rt2) ,

C = 3 (6− 6rt2 + (1 + r)rt3) / (3− rt2) .

(6.8)

Assume that the Bergman metric is Kähler-Einstein, that is

Ric(0, w) = −g(0, w).
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Consider the (1, 1̄)-component of the Ricci curvature, after rearrangement we obtain

4α2β − 4Aβ − 2Bα = 0. (6.9)

Plugging (6.8) into (6.9), we get

r2[rt2 − (1 + r)t+ 1] = 0.

Since 0 ≤ r < 1, we have rt2 − (1 + r)t+ 1 > 0. This implies r = 0. □

It was proved in [Gon19] that the holomorphic bisectional curvature of gB is negatively
pinched in Ωm. This implies that Ric(gB) is also negatively pinched. Thus, we can characterize
the Thullen domain if gm or gB is a Kähler-Ricci soliton.

Theorem 6.5. Let Ωm be the bounded Thullen domain in C2. Then the following statements
are equivalent.

(1) gm (or gB) is Kähler-Einstein;

(2) gm (or gB) is a Kähler-Ricci soliton;

(3) there is a constant λ > 0 such that gm = λgB;

(4) m = 1 and Ωm is the unit ball.

6.2. Strictly pseudoconvex Hartogs domains. Let C ∈ (0,+∞) and let F : [0, B) →
(0,+∞) be a continuous decreasing function that is smooth on (0, B) satisfying

d

dx

(
xF ′(x)

F (x)

)
< 0.

The bounded Hartogs domain DF ⊂ Cn associated with the function F is a strictly pseudocon-
vex domain given by

DF =
{
(z0, z1, . . . , zn−1) ∈ Cn; |z0|2 < x0, |z1|2 + · · ·+ |zn−1|2 < F

(
|z0|2

)}
.

There is a corresponding complete Kähler metric defined by

gF = −∂i∂j̄ log
(
F
(
|z0|2

)
− |z1|2 − · · · − |zn−1|2

)
.

In [LZ10], the authors showed that the Ricci curvature of gF is negatively pinched near the
boundary. Consequently, we have the following:

Corollary 6.6 (Theorem 1.2, [LZ10]). Let DF ⊂ Cn be a bounded strictly pseudoconvex
Hartogs domain equipped with a complete Kähler metric gf defined above. Suppose gF is a
Kähler-Ricci soliton. Then gF is Kähler-Einstein. Moreover, F (x) = C1 − C2x for some
C1, C2 > 0, which implies that DF is holomorphically isomorphic to an open subset of the
complex hyperbolic space Hn via the map

φ : DF → Hn, (z0, z1, . . . , zn−1) 7→

(
z0√
c1/c2

,
z1√
c1
, . . . ,

zn−1√
c1

)
.
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