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Abstract

This thesis mainly introduces some relationships between topological properties and
scalar curvature on 3-manifolds by using harmonic maps. Principally based on the works
of D. Stern and H. Bray, let u : M3 → S1 be a non-trivial S1-valued harmonic map
on M , we first explain an estimate relating the scalar curvature to the average Euler
characteristics of the level sets u−1(θ). Then, we use this estimate to see some new
proofs of classical results, such as Kronheimer-Mrowka’ classification theorem of the
Thurston norm, Bray-Brendle-Neves’ rigidity theorem for the systole and the T 3 admits
no positive scalar curvature metric of Schoen-Yau.
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Chapter 1

Introduction

In Riemannian geometry, the scalar curvature is the simplest curvature invariant
of a Riemannian manifold. Not like the sectional curvature or Ricci curvature, scalar
curvature is just a function on the Riemannian manifolds. For each point, it assigns a
single real number determined by the intrinsic geometry of the manifold near that point.
More precisely, the geometric intuition behind the scalar curvature S is the comparison
of volume between a geodesic ball with a sufficiently small radius in given manifolds Mm

and the ball in Euclidean space with the same radius, that is,

Vol (Bε(p) ⊂ M)

Vol (Bε ⊂ Rm)
= 1− S(p)

6(m+ 2)
ε2 +O

(
ε4
)
. (1.1)

From this, we can easily to see that, if a manifold M has scalar curvature S > 0, then
the volume of the geodesic ball with small radius is strictly smaller than the volume of
the ball in Euclidean space.

The studies of manifolds with bounded sectional curvature and Ricci curvature give
the structure in specific rigid forms. But, those manifolds with scalar curvature bounded
below, display an uncertain variety of flexible shapes similar to what we see in geometric
topology. Historically, two key techniques have been used to study the global structure
of a manifold with bounded scalar curvature, the Dirac operator methods originating in
the work of Lichnerowicz [1] (and further developed by Hitchin [2], Witten [3], Gromov-
Lawson [4], [5], [6], and others), and the minimal hypersurface methods pioneered by
Schoen and Yau [7], [8], [9] in the late 1970s.

In dimension two, the scalar curvature is the twice Gauss curvature, and certainly
characterizes the whole curvature of a surface. Thus, we may be interested in the mani-
folds with bounded scalar curvature for dimension more than two. In [10], Stern intro-
duced the following inequality for S1-valued harmonic maps on closed 3-manifolds M ,
relating the scalar curvature to the average Euler characteristic χ(Σθ) of the level sets
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2 Chapter 1 Introduction

Σθ := u−1(θ),
1

2

∫
θ∈S1

∫
Σθ

(
|∇2u|2

|∇u|2
+ SM

)
≤ 2π

∫
θ∈S1

χ(Σθ). (1.2)

The proof consists of applying Schoen–Yau rearrangement trick to the Ricci term in the
Bochner identity combining with the traced Gauss equation. Note that we have to keep
away from the case that ∇u ̸= 0, so it is necessary to consider a perturbation (|∇u|+δ)1/2

for some δ > 0, then taking δ → 0 at the end of computation. Later, Stern and Bray [11]
generalized the previous inequality to the case of compact 3-manifolds with boundary,
and we will see these carefully in Chapter 3.

The main application of Stern’s inequality is to characterize the Thurston norm of
homology class α ∈ H2(M ;Z) which generalizing the result given by Kronheimer and
Mrowka in [12] in terms of the L2-norm of the negative part of scalar curvature and
the harmonic norm of α. Meanwhile, it is also useful of Stern’s inequality in the proofs
of some classical rigidity result, such as the rigidity of homological 2–systole proved by
Bray–Brendle–Neves in [13] and the classical result that T 3 does not have positive scalar
curvature metric by Schoen-Yau in [7]. We will discuss these concretely in Chapter 4.



Chapter 2

Foundation for Riemannian
Geometry

In this Chapter, we review some notions in Riemannian geometry which we will use
later. For more details, one can see, for examples, [14] and [15].

2.1 Riemannian Manifolds

Let (Mm, g) denote a m-dimensional Riemannian manifold with metric g. We will
always assume that M is complete with respect to the metric space structure induced
by g. Throughout this thesis we use the Einstein convention for summation. In terms of
local coordinates x1, ..., xm, the metric is written in the form

g = gijdx
idxj .

If X = Xi ∂
∂xi and Y = Y j ∂

∂xj are two vector fields, we will also denote their inner
product by

g(X,Y ) := ⟨X,Y ⟩ = XiY jgij .

Let Γ(TM) be the space of smooth vector fields on M . The unique Levi-Civita
connection ∇ on M with respect to g is a smooth map ∇ : Γ(TM)× Γ(TM) → Γ(TM)

denoted by ∇(X,Y ) := ∇XY , satisfies the following properties:

(1) ∇(f1X1+f2X2)Y = f1∇X1Y + f2∇X2Y ;

(2) ∇X (f1Y1 + f2Y2) = X (f1)Y1 + f1∇XY1 +X (f2)Y2 + f2∇XY2;

(3) X ⟨Y1, Y2⟩ = ⟨∇XY1, Y2⟩+ ⟨Y1,∇XY2⟩;

(4) ∇XY −∇Y X = [X,Y ],

3



4 Chapter 2 Foundation for Riemannian Geometry

for all X,X1, X2, Y, Y1, Y2 ∈ Γ(TM) and f1, f2 ∈ C∞(M). The Christoffel symbols Γk
ij

with respect to ∇ are defined by

Γk
ij := ∇∂i∂j =

1

2
gkl(∂igjl + ∂jgil − ∂lgij),

where (gij) = (gij)
−1 is the inverse matrix of metric components (gij) and ∂i is the short

notation of ∂
∂xi . Then we have

∇XY = (Xi∂iY
k +XiY jΓk

ij)∂k.

In a different point of view, given any X ∈ Γ(TM), we may regard ∇X : Γ(TM ⊗
T ∗M) → C∞(M) as a (1,1)-tensor with the expression

∇X = (∂iX
k +XjΓk

ij)∂k ⊗ dxi.

Remark 2.1. We can extend our definition of connection ∇ to any general tensor bundle
which satisfies properties (1), (2) and

(5) ∇X(S ⊗ T ) = ∇XS ⊗ T + S ⊗∇XT ;

(6) tr(∇XS) = ∇X(trS),

for any X ∈ Γ(TM) and S, T tensor fields, where tr denotes the trace operator.

Next, we introduce some differential operators on M with respect to ∇. For any
f ∈ C∞(M), we define the gradient vector field of f by

⟨∇f,X⟩ := X(f), for all X ∈ Γ(TM).

Locally, we obtain ∇f = gij∂if∂j . Let trijg be the trace operator to tensors in i, j compo-
nents with respect to g. Note that we can globally define a metric g−1 on the cotangent
bundle T ∗M by g−1 = gij∂i∂j . Then we provide the definition of the divergence of a
smooth vector field by

divX := tr12g (∇X) = ∂iX
i +XjΓi

ij .

Since we have Γi
ij = 1

2g
ik (∂jgik + ∂igjk − ∂kgji) =

1
2g

ik∂jgik and ∂jG = (∂jgik)
(
gikG

)
,

where G = det(gij). These give another expression of divergence by

divX = ∂iX
i +

Xi

√
G
∂i
√
G =

1√
G
∂i

(√
GXi

)
.

The Laplace-Beltrami operator ∆ with respect to g can be given by

∆f := div∇f =
1√
G
∂i

(√
Ggij∂jf

)
, for all f ∈ C∞(M).
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Finally, for any X,Y ∈ Γ(TM), the Hessian operator ∇2 : C∞(M) → Γ(T ∗M ⊗ T ∗M)

is defined as
∇2f(X,Y ) := ⟨∇X∇f, Y ⟩ = XY (f)−∇XY (f),

or in tensor expression

∇2f = (∂i∂jf − Γk
ij∂kf)dx

i ⊗ dxj .

Remark 2.2. 1. One can check that ∇2f : Γ(TM) ⊗ Γ(TM) → C∞(M) is a sym-
metric operator.

2. The Laplace-Beltrami operator can also be defined by the trace of Hessian, i.e.
∆f = tr12g (∇2f)

Example 2.3. If Mm = Rm, then we have gij = δij and Γk
ij = 0. It is easy to check

that all differential operator defined above coincide with the usual differential operator
in Euclidean space.

The Riemann curvature tensor R : Γ(TM)⊗Γ(TM)⊗Γ(TM)⊗Γ(TM) → C∞(M)

is defined by

R(X,Y, Z,W ) := ⟨∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,W ⟩,

for all X,Y, Z,W ∈ Γ(TM). In local coordinates, we have

Rijkl = gln

(
∂iΓ

n
jk − ∂jΓ

n
ik + Γp

jkΓ
n
ip − Γp

ikΓ
n
jp

)
.

Some basic symmetric properties of the Riemann curvature tensor are

Rijkl = −Rjikl = −Rijlk = Rklij .

The sectional curvature of the 2-plane Π ⊂ TpM spanned by any two vector Xp, Yp ∈
TpM is defined by

K(Π) = K(Xp, Yp) :=
⟨Rm(Xp, Yp)Yp, Xp⟩

|Xp ∧ Yp|
.

A direct computation show that this equation is independent of the choice of such a basis
of Π. In dimension 2, the sectional curvature coincides with the Gauss curvature of a
surface at some points.

The Ricci tensor is a symmetric 2-tensor taken by the trace of the Riemann curvature
tensor, namely

Ric(X,Y ) := (tr14g R)(X,Y ),

or in tensor expression
Rij = gklRkijl.
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The scalar curvature is the trace of Ricci tensor,

S = gijRij .

Since the tensor equations are independent of the choice of coordinates, most of the
time we would like to choose the normal coordinates centered at some points p ∈ M to
simplify the computation. Recall that, for any p ∈ M , the normal coordinates centered
at p carries gij(p) = δij and Γk

ij(p) = 0, where δij is the Kronecker symbol.

Theorem 2.4 (Bochner formula). Let f ∈ C∞(M), we have

1

2
∆|∇f |2 = |∇2f |2 +Ric(∇f,∇f) + ⟨∇∆f,∇f⟩. (2.1)

Proof. We compute this in normal coordinates. Denote ∇∂i by ∇i, we have

1

2
∆|∇f |2 = ∇j(∇if · ∇j∇if)

= (∇j∇if)
2 +∇j∇j∇if · ∇if

= |∇2f |2 +∇j∇i∇jf · ∇if

= |∇2f |2 +∇i∇j∇jf · ∇if +Rij∇if · ∇jf

= |∇2f |2 +Ric(∇f,∇f) + ⟨∇∆f,∇f⟩.

This yields (2.1).

Let (Σm−1, g) be a smooth (m − 1)-dimensional submanifold of M , with induced
metric g from M . The second fundamental form of Σ is a symmetric 2-tensor A, defined
by

A(X,Y ) := ⟨∇Xν, Y ⟩,

where ν is the unit normal vector field of Σ. Note that if we choose the other orientation
of normal bundle NΣ, then our definition may be differed by a minus sign. It is well-
know that the mean curvature HΣ of the hypersurface Σ is defined by the trace of second
fundamental form, namely,

H := tr12g (A).

Let RM be the Riemann curvature tensor on M and let RΣ be the Riemann curvature
tensor on Σ. Then,

Lemma 2.5 (Weingarten equation). Let ∇ and ∇ be the Levi-Civita connection on Σ

and M respectively. Then for any X,Y ∈ Γ(TΣ) and ν ∈ Γ(NΣ), we have

A(X,Y ) = −⟨ν, (∇XY )⊥⟩, (2.2)
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where (∇XY )⊥ denote the projection of vector field ∇XY on the normal part that per-
pendicular to Σ.

Remark 2.6. Usually, we denote (∇XY )⊥ := II(X,Y ) be the vector second fundamen-
tal form on Σ and we have II(X,Y ) = −A(X,Y )ν ∈ Γ(NΣ). Obviously, it is symmetric
due to the symmetric property of the Levi-Civita connection. For any X,Y ∈ Γ(TΣ),
after extending them smoothly on M , the vector field ∇XY can be decompose uniquely
into the tangential part and the perpendicular part of TΣ, that is,

∇XY := ∇XY + II(X,Y ). (2.3)

Proof of Lemma 2.5. For any X,Y ∈ Γ(TΣ), we extend them smoothly to vector fields
on M and still write them by X,Y . So,

0 =X⟨ν, Y ⟩

=⟨∇Xν, Y ⟩+ ⟨ν,∇XY ⟩

=⟨∇Xν, Y ⟩+ ⟨ν,∇XY + II(X,Y )⟩

=A(X,Y ) + ⟨ν, II(X,Y )⟩,

which implies the equation (2.2).

Theorem 2.7 (Gauss equation). For any X,Y, Z,W ∈ Γ(TΣ), we have

RM (X,Y, Z,W ) = RΣ(X,Y, Z,W )−A(X,W ) ·A(Y, Z) +A(X,Z) ·A(Y,W ). (2.4)

Proof. For any X,Y, Z,W ∈ Γ(TΣ), we extend them smoothly to vector fields on M .
Then,

RM (X,Y, Z,W ) =⟨∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,W ⟩

=
〈
∇X

(
∇Y Z + II(Y, Z)

)
−∇Y

(
∇XZ + II(X,Z)

)
−∇[X,Y ]Z − II ([X,Y ], Z) ,W

〉
.

Since the vector second fundamental form is a normal vector field of Σ, then by the
Weingarten equation, we find

RM (X,Y, Z,W ) =
〈
∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,W

〉
−
〈
II(X,W ), II(Y,Z)

〉
+
〈
II(X,Z), II(Y,W )

〉
=
〈
∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,W

〉
−A(X,W ) ·A(Y,Z) +A(X,Z) ·A(Y,W )

=RΣ(X,Y, Z,W )−A(X,W ) ·A(Y, Z) +A(X,Z) ·A(Y,W ),

which implies the equation (2.4).
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Remark 2.8. In coordinates, we can write (2.4) as

RM
ijkl = RΣ

ijkl −AilAjk +AikAjl. (2.5)

2.2 Harmonic Maps

Consider a smooth map u : (Mm, g) → (Nn, h) between two compact Riemannian
manifolds with metrics g and h. Let (xi)mi=1 be a local coordinate near p ∈ M and let
(yα)nα=1 be a local coordinate near u(p) ∈ N with uα = yα ◦ u. From now on, to avoid
confusion, we use English letters as the indices of the coordinates of M and use Greek
letters as the indices of the coordinates of N .

The metrics g and h can be expressed in local coordinates as

g = gijdx
idxj and h = hαβdy

αdyβ.

We define the gradient ∇u as a section of the bundle TM ⊗ u∗TN , i.e. ∇u ∈
Γ(TM ⊗ u∗TN), where TM is the tangent bundle and u∗TN is the pull-back bundle of
TN by u. In local coordinates, we have the expression

∇u = gik∂ku
α∂i ⊗ ∂u

α,

where ∂i =
∂
∂xi be the local frame of TM , and ∂u

α = ( ∂
∂yα )

u be the local frame of u∗TN .
The Dirichlet energy density function e(u) = 1

2 |∇u|2 is defined by

e(u)(p) =
1

2
|∇u|2(p) = 1

2
gij(p)hαβ(u(p))∂iu

α(p)∂ju
β(p).

Let dVg be the volume form on M with respect to the metric g. The Dirichlet energy
functional is defined by

E(u) =

∫
M

e(u)dVg. (2.6)

Definition 2.9. A smooth map u : Mm → Nn is said to be harmonic if it is the critical
point of the Dirichlet energy functional.

In an intrinsic viewpoint, the differential map du : TM → TN can be regard as
du = ∂iu

αdxi ⊗ ∂u
α ∈ Γ(T ∗M ⊗ u∗TN). Then we see that,

e(u) =
1

2
⟨du, du⟩T ∗M⊗u∗TN ,
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where ⟨·, ·⟩T ∗M⊗u∗TN denotes the inner product on T ∗M ⊗ u∗TN induced from T ∗M

and u∗TN . Also, we have

tr12g (u∗h) = gij(u∗h)(∂i, ∂j) = gijh(∂iu, ∂ju) = 2e(u).

Let ∇ be the covariant derivative on T ∗M ⊗ u∗TN induced from T ∗M and u∗TN .
Then we define the hessian of u by ∇2u := ∇du ∈ Γ(T ∗M ⊗ T ∗M ⊗ u∗TN). In local
coordinates, we compute that

(∇2u)αij = (∇idu)(∂j , dy
α)

= ∂i∂ju
α − du(Γk

ij∂k, dy
α)− du(∂j ,∇idy

α)

= ∂i∂ju
α − Γk

ij∂ku
α − du(∂j , ∂iu

β∇βdy
α)

= ∂i∂ju
α − Γk

ij∂ku
α + ∂iu

β∂ju
γ(Γα

βγ ◦ u),

where Γk
ij and Γα

βγ are the Christoffel symbols of the metric g and h on M and N

respectively. Thus, we have

∇2u =
(
∂i∂ju

α − Γk
ij∂ku

α + ∂iu
β∂ju

γ(Γα
βγ ◦ u)

)
dxi ⊗ dxj ⊗ ∂u

α.

Definition 2.10. For any smooth map u : Mm → Nn, the map Laplacian of u is defined
by

∆g,hu := tr12g (∇2u) =
(
∆uα + gij∂iu

β∂ju
γ(Γα

βγ ◦ u)
)
∂u
α, (2.7)

where ∆ is the Laplace-Beltrami operator on M with respect to the metric g.

By computing the variational equation of the Dirichlet energy functional, we have
the following:

Proposition 2.11. A smooth map u : (Mm, g) → (Nn, h) is harmonic if and only if
∆g,hu = 0.

Proof. For any ϕ ∈ C∞(M,Rn), we consider the variation u+ tϕ for sufficient small |t|,
where u is harmonic. Let G be the determinant of metric (gij). So we have

0 =
1

2

d

dt

∣∣∣∣
t=0

∫
M

|∇u|2dVg

=
1

2

d

dt

∣∣∣∣
t=0

∫
M

gijhαβ(u+ tϕ)(∂iu
α + t∂iϕ

α)(∂ju
β + t∂jϕ

β)
√
Gdx

=

∫
M

(
1

2
gij∂γhαβ(u)ϕ

γ∂iu
α∂ju

β + gijhαβ(u)∂iϕ
α∂ju

β

)√
Gdx

=
1

2

∫
M

gij∂γhαβ(u)ϕ
γ∂iu

α∂ju
βdVg

−
∫
M

∂i

(
gij∂ju

β
√
G
)
hαβ(u)ϕ

α + gij∂ju
β∂iu

γ∂γhαβ(u)ϕ
αdVg,



10 Chapter 2 Foundation for Riemannian Geometry

where the last equality holds because of integration by parts. This implies∫
M

∆uβhαβ(u)ϕ
αdVg =

1

2

∫
M

gij∂γhαβ(u)ϕ
γ∂iu

α∂ju
βdVg

−
∫
M

gij∂ju
β∂iu

γ∂γhαβ(u)ϕ
αdVg.

Taking ϕα = hαδηδ, where η = (η1, ..., ηn) ∈ C∞(M,Rn), we obtain∫
M

∆uαηαdVg

=− 1

2

∫
M

gijhαδ(u) (∂βhγδ(u) + ∂γhβδ(u)− ∂δhβγ(u)) ∂iu
γ∂ju

βηαdVg

=−
∫
M

gij∂iu
β∂ju

γ(Γα
βγ ◦ u)ηαdVg,

which completes the proof, following from (2.7).

Remark 2.12. Consider a smooth one-parameter family of maps us : (Mm, g) →
(Nn, h) with u0 = u. Assume there exists a compact set K ⊂ M , s.t us = u on
M \K for all s. A similar computation shows the first variation formula

d

ds

∣∣∣∣
s=0

∫
M

e(us)dVg =

∫
M
⟨ d
ds

∣∣∣∣
s=0

us,∆g,hu⟩dVg, (2.8)

if M is compact without boundary. Or,

d

ds

∣∣∣∣
s=0

∫
M

e(us)dVg =

∫
M
⟨ d
ds

∣∣∣∣
s=0

us,∆g,hu⟩dVg +

∫
∂M

⟨ d
ds

∣∣∣∣
s=0

us,∇νu⟩dVg∂M , (2.9)

if M is compact with boundary, where ν is the unit norm vector field along ∂M .

Example 2.13. • If N = Rn, then u : M → Rn is harmonic if and only if each
component of u is a harmonic function on M .

• If M = S1, then, following from the expression of map Laplacian, u : S1 → N is
harmonic if and only if u is a geodesic in N .

Proposition 2.14. If Φ : (M, g) → (M,Φ∗g) is a smooth diffeomorphism and u :

(M, g) → (N,h) is a harmonic map. Then u ◦Φ : (M,Φ∗g) → (N,h) is also a harmonic
map.

Proof. In local coordinates, we compute that∫
M

|∇(u ◦ Φ)|2dVΦ∗g =

∫
M

gijhαβ(u ◦ Φ)∂kuα∂iΦk∂lu
β∂jΦ

l
√
G ◦ Φdx

=

∫
M

gijhαβ(u)∂iu
α∂ju

β
√
Gdx

=

∫
M

|∇u|2dVg,
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where the second equality we use the coordinates change formula.

Next, we would like to compute ∆ge(u). For simplify, we do the computation in
normal coordinate centered at p on M , and the normal coordinate centered at u(p) on
N . Let RM and RN be the Riemannian curvature tensor on M and N and let RicM be
the Ricci tensor on M .

Theorem 2.15. Let u : (M, g) → (N,h) be a harmonic map. Then we have

∆e(u) = |∇2u|2 +
〈
RicM , u∗h

〉
g
− tr24g tr13g

(
u∗RN

)
. (2.10)

Proof. Let p ∈ M , we compute in normal coordinate at p,

1

2
∆|∇u|2 =1

2
∆
(
gijhαβ(u)∂iu

α∂ju
β
)

=((((((((((
gklhαβ∂i∂i∂ku

α∂lu
β + gklhαβ∂i∂ku

α∂i∂lu
β

− 1

2
(∂i∂igkl + ∂k∂lgii − ∂i∂kgil − ∂i∂lgki)hαβ∂ku

α∂lu
β

− 1

2
(∂β∂δhαγ + ∂α∂γhβδ − ∂β∂γhαδ − ∂α∂δhβγ) g

kl∂ku
α∂iu

β∂lu
γ∂iu

δ

=|∇2u|2 +RM
ij ∂iu

α∂ju
α −RN

αβγδ∂iu
α∂ju

β∂iu
γ∂ju

δ,

which is the desired equation.





Chapter 3

The S1-valued Harmonic Maps on
3-Manifolds

We will present in this chapter the inequalities given by Stern and Bray in papers [10]
and [11] .

3.1 Preliminaries

We first introduce some basic definitions in algebraic topology and Hodge theory
for real manifolds. We strongly recommend the readers to look at [14] and [16] for more
details. In the rest part of this thesis, we always demand that M is a connected, oriented
and compact Riemannian manifold. Let u : (Mm, g) → S1 be a harmonic map. Consider
the pull-back one-form h := u∗dθ on M . More precisely, set h = dũ, where ũ : M → R is
a local lift of u. Let d be the differential operator to forms and let d∗ be the codifferential
operator corresponding to d.

Proposition 3.1. The S1-valued map u is harmonic if and only if h is a harmonic form,
i.e. dh = 0 and d∗h = 0.

Proof. Locally, let h = ∂iudx
i. Compute in normal coordinates, we have

dh = d(du) = 0, and d∗h = −gij∇i∇ju = −∆u,

which yields the result.

Then following from the Hodge theory, we know that every homotopy class [v] in
[M : S1] contains a harmonic representative u such that u∗dθ is a harmonic 1-form.

By the Hopf classification theorem and Poincaré duality (see [16], p431, Theorem

13
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15 and p297, Theorem 18), we know that each (m − 1)−homology class α corresponds
to a homotopy class [u] ∈ [M : S1] whose level sets Σθ := u−1(θ) of some regular points
θ ∈ S1 represent α.

Remark 3.2. In the case of manifolds with boundary, we recall that by Poincaré-
Lefschetz duality and Hopf classification, we then have the isomorphism

[
M : S1

] ∼= H1(M ;Z) ∼= Hm−1(M,∂M ;Z),

such that each α ∈ Hm−1(M,∂M ;Z) can still be represented by the level sets of some
non-trivial harmonic maps u.

We now recall the co-area formula and Gauss-Bonnet formula. For simplicity, we
only recall the case of scalar-valued functions co-area formula. For further discussion,
one can see [17].

Theorem 3.3 (Co-area formula). Let u : (Mm, g) −→ R be a C1-function and let h be
a measurable function on M . Then we have

∫
M

h|∇u| dVg =

∫
R

(∫
u−1(x)

h dVg

)
dx. (3.1)

Theorem 3.4 (Gauss-Bonnet formula). Let (M2, g) be a compact 2-dimensional Rie-
mannian manifold with boundary ∂M . Let K be the Gaussian curvature of M , and let
k be the geodesic curvature of ∂M . Then∫

M
KdVg +

∫
∂M

kdVg∂M = 2πχ(M), (3.2)

where χ(M) is the Euler characteristic of M .

Remark 3.5. If M is closed, then we have∫
M

KdVg = 2πχ(M). (3.3)

Assume u : (Mm, g) → S1 is a harmonic map, locally, this is the same thing as a
harmonic function, but it is only globally well-defined modulo Z. We consider Σθ :=

u−1(θ) be the level sets of u for some regular values θ. Then, the gradient vector field
∇u is perpendicular to the level set Σθ. We can define ν := ∇u

|∇u| by the unit normal
vector field of Σθ. Let A denote the second fundamental form of Σθ and let H denote
the mean curvature of Σθ.

Proposition 3.6. For any X,Y ∈ Γ(TΣθ), we have the following facts,

1. A(X,Y ) = ∇2u(X,Y )
|∇u| ;
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2. |A|2 = 1
|∇u|2

(
|∇2u|2 − 2|∇|∇u||2 +∇2u(ν, ν)2

)
;

3. H2 = 1
|∇u|2∇

2u(ν, ν)2.

Proof. By the definition of second fundamental form, we have

A(X,Y ) = ⟨∇Xν, Y ⟩ = 1

|∇u|
⟨∇X∇u, Y ⟩ = 1

|∇u|
∇2u(X,Y ).

This prove the first formula.

For the second one, choose an orthonormal basis {ei}mi=1 with em = ν, we find

|∇u|2|A|2 = |∇u|2
m−1∑
i,j=1

A(ei, ej)
2

= |∇u|2
 m∑

i,j=1

A(ei, ej)
2 − 2

m∑
i=1

A(ei, em)2 +A(em, em)2


= |∇2u|2 − 2|∇2u(·, ν)|2 +∇2u(ν, ν)2.

Also,

2∇|∇u| · |∇u| = ∇|∇u|2 = 2⟨∇∇u,∇u⟩ = 2|∇u| · ∇2u(·, ν).

So, we obtain
|∇u|2|A|2 = |∇2u|2 − 2|∇|∇u||2 +∇2u(ν, ν)2.

Finally, we note that

|∇u| ·H = |∇u| · tr12g (A) = tr12g (∇2u)−∇2u(ν, ν) = −∇2u(ν, ν),

since ∆u = 0. This yields the last equation.

Lemma 3.7 (Traced Gauss equation). Let Σm−1 ⊂ Mm be any hypersurface of M and
let RicM , SM , SΣ be the Ricci tensor and scalar curvature on M and Σ respectively.
Then.

Ric(ν, ν) =
1

2

(
SM − SΣ +H2 − |A|2

)
. (3.4)

Proof. We consider the Gauss equation in local coordinates

RM
ijkl = RΣ

ijkl −AilAjk +AikAjl.

Taking trace in i, l components with respect to the metric on Σ induced from g, then

RM
jk −RM

νjkν = RΣ
jk −HAjk + gilAikAjl.
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Then, taking trace in j, k components, we obatin

SM −RM
νν −RM

νν = SΣ −H2 + |A|2.

Rearranging it, we have

RM
νν =

1

2

(
SM − SΣ +H2 − |A|2

)
,

which yields (3.4).

3.2 Case for Closed 3-Manifolds

In this section, we will show the ideas of Stern’s proof of Theorem 1.1 in [10] for
closed manifolds.

Theorem 3.8. Let (M3, g) be a closed, oriented 3-manifold, and let u : M → S1 be
a non-trivial harmonic map. Then the level sets Σθ := u−1(θ) for some regular values
θ ∈ S1 of u satisfy

1

2

∫
θ∈S1

∫
Σθ

(
|∇2u|2

|∇u|2
+ SM

)
≤ 2π

∫
θ∈S1

χ(Σθ). (3.5)

Remark 3.9. In general, the level set Σθ := u−1(θ) of S1-valued harmonic maps u may
have several components, and χ(Σθ) denotes the sum of their Euler characteristics.

Proof of Theorem 3.5. Let ∇u be the gradient vector field dual to the harmonic 1-form
u∗dθ. By the Bochner formula, we have

∆|∇u|2 = 2|∇2u|2 + 2Ric(∇u,∇u).

Let φδ := (|∇u|2 + δ)1/2 for any δ > 0 small enough. We then compute that

∆φδ =
1

φδ

(
1

2
∆|∇u|2 − |∇u|2

φ2
δ

|∇|∇u||2
)
.

By Proposition 3.6, we can rewrite the traced Gauss equation

Ric(∇u,∇u) = |∇u|2Ric(ν, ν) =
|∇u|2

2

(
SM − SΣ

)
+ |∇|∇u||2 − 1

2
|∇2u|2.
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Then, we have

∆φδ =
1

φδ

(
1

2
∆|∇u|2 − |∇u|2

φ2
δ

|∇|∇u||2
)

≥ 1

φδ

(
|∇2u|2 +Ric(∇u,∇u)− |∇|∇u||2

)
=

1

φδ

(
|∇2u|2 + |∇u|2

2

(
SM − SΣ

)
+ |∇|∇u||2 − 1

2
|∇2u|2 − |∇|∇u||2

)
=

1

2φδ

(
|∇2u|2 + |∇u|2

(
SM − SΣ

))
.

Let A ⊂ S1 be an open set containing all critical values of u and let B = S1 \ A

which is a closed subset of the set of all regular values. Since M is closed, we obtain

0 =

∫
M

∆φδ =

∫
u−1(A)

∆φδ +

∫
u−1(B)

∆φδ.

It follows that∫
u−1(B)

1

2φδ

(
|∇2u|2 + |∇u|2

(
SM − SΣ

))
≤ −

∫
u−1(A)

∆φδ.

Moreover, since M is compact, there exists a constant CM > 0 depending on the metric
structure of M , s.t.

∆φδ ≥
1

φδ

(
|∇2u|2 +Ric(∇u,∇u)− |∇|∇u||2

)
≥ −CM |∇u|.

By co-area formula, we then have

−
∫
u−1(A)

∆φδ ≤ CM

∫
u−1(A)

|∇u| = CM

∫
A
|Σθ|,

where |Σθ| denotes the Hausdorff measure of Σθ. Meanwhile, since ∇u ̸= 0 on u−1(B),
we can pass the limit δ → 0 and obtain that∫

u−1(B)

1

2|∇u|
(
|∇2u|2 + |∇u|2

(
SM − SΣ

))
≤ CM

∫
A
|Σθ|.

In dimension two, the scalar curvature is twice the Gauss curvature. By applying the
co-area formula and Gauss-Bonnet formula on the left-hand side, we find∫
u−1(B)

1

2|∇u|
(
|∇2u|2 + |∇u|2

(
SM − SΣ

))
=

1

2

∫
B

∫
Σθ

(
|∇2u|2

|∇u|2
+ SM

)
−
∫
B
2πχ(Σθ).

Plugging this into the previous estimate gives

1

2

∫
B

∫
Σθ

(
|∇2u|2

|∇u|2
+ SM

)
−
∫
B
2πχ(Σθ) ≤ CM

∫
A
|Σθ|.
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Finally, by Sard’s theorem, we can take the measure of A arbitrarily small, and since
θ 7→ |Σθ| is integrable over S1 (this is easy to see from the co-area formula). Taking the
measure of A goes to 0, we have ∫

A
|Σθ| −→ 0.

Thus, we obtain the desired result.

Corollary 3.10. Let (Mm, g) be a closed, oriented m-dimensional manifold, and let
u : M → S1 be a non-trivial harmonic map. Then for any ϕ ∈ C∞(M), we have

1

2

∫
θ∈S1

∫
Σθ

(
|∇2u|2

|∇u|2
+ SM − SΣθ

)
ϕ2 ≤ −2

∫
M

ϕ⟨∇ϕ,∇|∇u|⟩. (3.6)

Proof. With the same setting in the previous proof, recall that we have the relation

∆φδ ≥
1

2φδ

(
|∇2u|2 + |∇u|2

(
SM − SΣ

))
.

Multiply any smooth function ϕ2 in the both side and integrate over u−1(B), we find∫
u−1(B)

ϕ2

2φδ

(
|∇2u|2 + |∇u|2

(
SM − SΣ

))
≤
∫
u−1(B)

ϕ2∆φδ =

∫
u−1(B)

(
∆(φδϕ)− φδ∆(ϕ2)− 2⟨∇(ϕ2),∇φδ⟩

)
.

Applying the co-area formula, we obtain

1

2

∫
B

∫
Σθ

(
|∇2u|2

|∇u|φδ
+ SM − SΣθ

)
ϕ2 ≤

∫
u−1(B)

∆(φδϕ)−
(
φδ∆(ϕ2) + 2⟨∇(ϕ2),∇φδ⟩

)
Taking δ → 0, and for the right-hand side, we note∫
u−1(B)

|∇u|∆(ϕ2) =

∫
u−1(B)

|∇u|
(
2|∇ϕ|2 + 2ϕ∆ϕ

)
= 2

∫
u−1(B)

|∇u||∇ϕ|2 − 2

∫
u−1(B)

⟨∇(ϕ|∇u|),∇ϕ⟩

= 2

∫
u−1(B)

|∇u||∇ϕ|2 − 2

∫
u−1(B)

|∇u||∇ϕ|2 − 2

∫
u−1(B)

ϕ⟨∇ϕ,∇|∇u|⟩,

and

2

∫
u−1(B)

⟨∇(ϕ2),∇φδ⟩ = 4

∫
u−1(B)

ϕ⟨∇ϕ,∇|∇u|⟩.

Combining these equations and taking |A| → 0, we obtain the desired inequality.

From (3.6), it is not hard to see the following facts.
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Corollary 3.11. There does not exist any hypersurface Σθ := u−1(θ) ⊂ M which can be
represented by the level sets of some S1-valued harmonic maps u, so that

SM > SΣθ .

Proof. Assuming there exists a Σ′
θ, such that SM > SΣ′

θ . Then taking ϕ ≡ 1 in (3.6),
we have

0 <

∫
S1

∫
Σ′

θ

(
SM − SΣ′

θ

)
≤
∫
S1

∫
Σ′

θ

(
|∇2u|2

|∇u|2
+ SM − SΣ′

θ

)
≤ 0,

which is a contradiction.

3.3 Case for Compact 3-Manifolds with Boundary

In this chapter, we will focus on the case of the compact manifolds with boundary.
Assume (Mm, g) is a compact Riemannian manifold with boundary ∂M which has the
metric induced from M . Recall that from the first variation formula of harmonic maps,
a map u : (M, g) → S1 minimizes the Dirichlet energy in its homotopy class if and only
if du = 0 = d∗u and satisfies the homogeneous Neumann boundary condition, i.e.

⟨N,∇u⟩ = 0,

on ∂M , where N is the unit outward normal vector field of ∂M .

Theorem 3.12. Let (M3, g) be a compact, oriented 3-manifold with boundary ∂M , and
let u : M → S1 be a non-trivial harmonic map satisfies the homogeneous Neumann
boundary condition. Then the level sets Σθ := u−1(θ) for some regular values θ ∈ S1 of
u satisfy

1

2

∫
θ∈S1

(∫
Σθ

(
|∇2u|2

|∇u|2
+ SM

)
+

∫
∂Σθ

H∂M

)
≤ 2π

∫
θ∈S1

χ(Σθ), (3.7)

where H∂M denotes the mean curvature of ∂M .

Proof. Let φδ := (|∇u|2+ δ)1/2 for any δ > 0 small enough. With the same computation
in Theorem 3.8, we have

∆φδ ≥
1

2φδ

(
|∇2u|2 + |∇u|2

(
SM − SΣ

))
.
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Away from critical points of u along the boundary ∂M , we see that

⟨∇φδ, N⟩ = 1

φδ

〈
|∇u| · ∇|∇u|, N

〉
=

1

2φδ

〈
∇
(
|∇u|2

)
, N
〉

=
1

2φδ
N⟨∇u,∇u⟩

=
1

φδ
⟨∇N∇u,∇u⟩

=
1

φδ
⟨∇∇u∇u,N⟩

=
1

φδ
(∇u�����⟨∇u,N⟩ − ⟨∇u,∇∇uN⟩) .

Let A ⊂ S1 be an open set containing all critical values of u and let B = S1 \ A

which is a closed subset of the set of all regular values. For some θ ∈ B, we define

Qδ(θ) =

∫
Σθ

|∇u|
2φδ

(
|∇2u|2

|∇u|2
+ SM − SΣθ

)
+

∫
∂Σθ

1

φδ

〈 ∇u

|∇u|
,∇∇uN

〉
.

By using the co-area formula and combining with the previous computations, we conclude
that∫

B
Qδ(θ) =

∫
B

∫
Σθ

|∇u|
2φδ

(
|∇2u|2

|∇u|2
+ SM − SΣθ

)
+

∫
B

∫
∂Σθ

1

φδ

〈 ∇u

|∇u|
,∇∇uN

〉
=

∫
u−1(B)

|∇u|2

2φδ

(
|∇2u|2

|∇u|2
+ SM − SΣθ

)
+

∫
u−1(B)∩∂M

1

φδ
⟨∇u,∇∇uN⟩

≤
∫
u−1(B)

∆φδ +

∫
u−1(B)∩∂M

1

φδ
⟨∇u,∇N∇u⟩

≤ −
∫
u−1(A)

∆φδ +

∫
∂M

⟨∇u,N⟩ −
∫
u−1(B)∩∂M

⟨∇φδ, N⟩

= −
∫
u−1(A)

∆φδ +

∫
u−1(A)∩∂M

⟨∇φδ, N⟩

≤ C

(∫
u−1(A)

|∇u|+
∫
u−1(A)∩∂M

|∇u|

)

≤ C

∫
A
(|Σθ|+ |∂Σθ|) ,

where C > 0 is a constant.

Let ν := ∇u/|∇u| be the unit normal vector field of Σθ. On the compact set B of
regular values, as δ → 0, we see that Qδ converges uniformly to

Q(θ) =

∫
Σθ

1

2

(
|∇2u|2

|∇u|2
+ SM − SΣθ

)
+

∫
∂Σθ

⟨ν,∇νN⟩.
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Note that N is also the unit normal vector field of ∂Σθ and N ⊥ ν. We define
τ := ∗(ν ∧ N) be the unit vector field tangent to ∂Σθ. Since ν, τ give an orthonormal
basis of ∂M , the mean curvature H∂M of ∂M is given by

H∂M = A(ν, ν) +A(τ, τ) = ⟨ν,∇νN⟩+ ⟨τ,∇τN⟩.

The geodesic curvature of ∂Σθ can be defined by k∂Σθ := ⟨τ,∇τN⟩. Putting these
together and using the Gauss-Bonnet formula, we obtain

Q(θ) =

∫
Σθ

1

2

(
|∇2u|2

|∇u|2
+ SM − SΣθ

)
+

∫
∂Σθ

(
H∂M − k∂Σθ

)
=

[∫
Σθ

1

2

(
|∇2u|2

|∇u|2
+ SM

)
+

∫
∂Σθ

H∂M

]
− 2πχ(Σθ).

Thus, we find∫
B

∫
Σθ

1

2

(
|∇2u|2

|∇u|2
+ SM

)
+

∫
B

∫
∂Σθ

H∂M ≤ 2π

∫
B
χ(Σθ) + C

∫
A
(|Σθ|+ |∂Σθ|) .

By Sard’s theorem, we may take |A| arbitrarily small. It follows that∫
S1

∫
Σθ

1

2

(
|∇2u|2

|∇u|2
+ SM

)
+

∫
S1

∫
∂Σθ

H∂M ≤ 2π

∫
S1

χ(Σθ),

which yields the desired result.

Corollary 3.13. Let (Mm, g) be a compact, oriented m-dimensional manifold with bound-
ary ∂M , and let u : M → S1 be a non-trivial harmonic map. Then for any ϕ ∈ C∞(M),
we have

1

2

∫
θ∈S1

∫
Σθ

(
|∇2u|2

|∇u|2
+ SM − SΣθ

)
ϕ2 ≤ −2

∫
M

ϕ⟨∇ϕ,∇|∇u|⟩+
∫
∂M

ϕ2⟨∇|∇u|, N⟩.

(3.8)
Moreover, if ϕ ∈ C∞

c (M), then we have

1

2

∫
θ∈S1

∫
Σθ

(
|∇2u|2

|∇u|2
+ SM − SΣθ

)
ϕ2 ≤ −2

∫
M

ϕ⟨∇ϕ,∇|∇u|⟩. (3.9)





Chapter 4

More on Applications

In this chapter, we will show some more applications of Stern’s inequalities.

4.1 Characterization of the Thurston Norm

The most important application of Stern’s inequalities is to generalize the results
shown by Kronhermer and Mrowka in [12].

For a closed, oriented 3–manifold, we recall that the Thurston norm (or semi–norm)
of a homology class α ∈ H2(M ;Z) is defined by the minimum

∥α∥T := min{χ−(Σ) | [Σ] = α ∈ H2(M ;Z)}, (4.1)

over all embedded surfaces Σ representing α, where χ−(Σ) denotes the sum

χ−(Σ) = max {0,−χ (Σ1)}+ · · ·+max {0,−χ (Σk)} .

of all components Σ1, ...,Σk of Σ. In 1986, Thurston introduced this concepts in [18] to
study the foliations and fibrations of 3–manifolds over S1.

When the manifold M3 equips a Riemannian metric, we can define another natural
norm on α ∈ H2(M ;Z), called harmonic norm, by the L2 norm of the harmonic 1-form
hα ∈ H1(M), with integral periods duals to α, i.e.

∥α∥H := ∥hα∥L2 .

In our case, we see that ∥α∥H = ∥∇u∥L2 which is the L2 norm of the harmonic map
u : M3 → S1 whose level sets represent α. It is natural to ask the relation between this
two norms, from Stern’s inequalities, we have the following truth.

23
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Theorem 4.1. Let (M3, g) be a closed, oriented 3–manifold containing no non-separating
spheres. Then for any non-trivial class α ∈ H2(M ;Z), we have

∥α∥T ≤ 1

4π
∥∇u∥L2∥S−∥L2 , (4.2)

where S− := min{0,−SM} is the negative part of the scalar curvature of M . If the
equality holds for some non-trivial α ∈ H2(M ;Z), then M is covered isometrically by a
cylinder Σ× R s.t. Σ has constant non-positive curvature.

Proof. Given a nontrivial homology class α ∈ H2(M ;Z) consider the harmonic map
u : M3 → S1 whose level sets Σθ = u−1(θ) lie in α. Since M contains no non-separating
spheres, it follows every components Σ1, ...,Σk of Σθ must have non-positive Euler char-
acteristics, so that by the definition of the Thurston norm, for all regular values θ ∈ S1,
we have

∥α∥T ≤ −χ(Σθ).

Combining this with (3.5), and assuming that the unit circle has length 1, we then obtain

2π∥α∥T =

∫
S1

2π∥α∥T ≤ −2π

∫
S1

χ(Σθ)

≤ −1

2

∫
S1

∫
Σθ

(
|∇2u|2

|∇u|2
+ SM

)
≤ −1

2

∫
S1

∫
Σθ

SM

= −1

2

∫
M

SM · |∇u|.

The equality holds if and only if Σθ attains the minimum of all representatives of α,
|∇2u| = 0 and SM = SΣθ . By Cauchy-Schwarz inequality, we find

2π∥α∥T ≤ −1

2

∫
M

SM · |∇u| ≤ 1

2
∥∇u∥L2∥S−∥L2 ,

and the equality holds if and only if SM = −C|∇u| for some constant C > 0.

In the equality case, we have ∇2u = 0 and ∇u is parallel (thus is killing). This
implies that the metric splits locally by Σθ × (−ε, ε), which is covered isometrically by
Σθ × R.

Now, if we assume that M3 is compact with boundary, from (3.7), by the same
computation, it’s not hard to deduce the following fact.

Theorem 4.2. Let (M3, g) be a compact, oriented 3–manifold with boundary ∂M such
that every connected, embedded surface (Σ, ∂Σ) ⊂ (M,∂M) of genus zero is trivial in



Chapter 4 More on Applications 25

H2(M,∂M ;Z). Then for any non-trivial class α ∈ H2(M,∂M ;Z), we have

∥α∥T ≤ 1

4π
∥∇u∥L2(M)∥S−∥L2(M) +

1

2π
∥∇u∥L2(∂M)∥H−∥L2(∂M), (4.3)

where S− := min{0,−SM} is the negative part of the scalar curvature of M and H− is
the negative part of the mean curvature of ∂M . If the equality holds for some non-trivial
α ∈ H2(M ;Z), then M is covered isometrically by a cylinder Σ × R such that Σ has
constant non-positive curvature and ∂Σ has constant non-positive geodesic curvature.

The estimate (4.2) in its dual form, bounding the harmonic norm on H2(M) above
by the product of ∥S−∥L2 and the dual Thurston norm, was proved for irreducible 3-
manifolds by Kronheimer and Mrowka in [12]. The proof is very different from this one.
And the rigidity result was later proved by Itoh and Yamase in [19]. For more interesting
refinements and developments on this topic, we recommend the paper [20] written by
Lin.

Note that in Theorem 4.1, we have the assumption that our closed manifolds M

contains no non-separating spheres. We now would like to extend this statement to any
closed, oriented 3-manifolds. Let S ⊂ H2(M ;Z) be a subgroup generated by embedded 2-
spheres in M . The first step is to find a collection of disjoint minimal 2-spheres generating
S, by using the work of Meeks and Yau [21].

Lemma 4.3. There exists a finite collection of disjoint embedded, non-separating, min-
imal 2-spheres S1, ..., Sk ⊂ M generating S.

Proof. By Theorems 7 of [21], we know that there exists a finite collection

f1, ..., fn : S2 −→ M

of conformal minimal immersions which generate π2(M) as a π1(M)-module. Moreover,
each map fi is either an embedding of S2 or factors through an embedding of RP2, and
the images fi(S

2) are disjoint.
We consider a sub-collection f1, ..., fk so that (fi)∗[S2] ̸= 0 ∈ H2(M ;Z) after relabel-

ing. Since the full collection f1, ..., fn generates π2(M), by Hurewicz theorem, we know
that the push-forwards S1 = (f1)∗[S

2], ..., Sk = (fk)∗[S
2] must generate S in H2(M ;Z).

We claim that fi doesn’t factor through an embedding of RP2. Otherwise, the non-
triviality means that there exists a f̃ : RP2 → M s.t. (fi)∗π∗[S

2] ̸= 0, where π is the
natural projection from S2 to RP2. But we have H2(RP2;Z) = 0, that contradicts to
the non-triviality assumption. Thus, we have Si corresponds to an embedded, two-sided
2-sphere in M and Si ∩ Sj ̸= 0 if i ̸= j which satisfies the property we need.

Now, we cut M along the spheres S1, ..., Sk of Lemma 4.3 to obtain a compact
manifold N with boundary ∂N (see Fig. 4.1). Note that the boundary ∂N of N consists
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Figure 4.1: Cutting M along Si

of 2k minimal spheres, and N carries a local isometry Ψ : N → M which restricts to a
global isometry N \∂N → M \

⋃k
i=1 Si. We now consider the map Φ = Ψ∗ : H1(M ;Z) →

H1(N ;Z). We’ll see that Φ decreases the harmonic norm.

Lemma 4.4. For any ω ∈ H1(M ;Z), we have

∥Φ(ω)∥H ≤ ∥ω∥H . (4.4)

Proof. Let ω ∈ H1(M ;Z) ∼= [M : S1] and let u : M → S1 be the harmonic representative
of ω, so that ∥ω∥H = ∥∇u∥L2 . The harmonic norm of the class Φ(ω) ∈ H1(N ;Z) is then
given by the infimum of the L2 norm of the gradient among all maps homotopic to u ◦Ψ
on N . In particular, by Proposition 2.14, it follows that

∥Φ(ω)∥H ≤ ∥∇(u ◦Ψ)∥L2(N) = ∥∇u∥L2(M) = ∥ω∥H ,

as claimed.

Equivalently, by Poincaré-Lefschetz duality, we can also view Φ as a map

Φ : H2(M ;Z) → H2(N, ∂N ;Z).

Next, we show that Φ does not decrease the Thurston norm of a class α ∈ H2(M ;Z).
To avoid unnecessary troubles, by using the following simple topological statement, we
can remove the boundary term of the representative in H2(N, ∂N ;Z).

Lemma 4.5. For any connected, embedded surface (Σ, ∂Σ) ⊂ (N, ∂N), there exists a
closed surface Σ̃ ⊂ N of the same genus such that [Σ̃] = [Σ] ∈ H2(N, ∂N ;Z).

Proof. Consider a connected, embedded (Σ, ∂Σ) ⊂ (N, ∂N), and assume without loss
of generality that Σ intersects ∂N transversally along ∂Σ. Suppose ∂Σ ̸= ∅ (otherwise
take Σ̃ = Σ), so that ∂Σ consists of some number l of embedded loops γ1, ..., γl in ∂N .
Since ∂N consists of spheres, it follows that each boundary component γi of Σ may be
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realized as the boundary of a topological disk Di ⊂ ∂N . Moreover, since the distinct
boundary components γi do not intersect, it follows that for every pair Di, Dj of these
disks, either Di ∩Dj = ∅, or one disk is strictly contained in the other. In particular,
we can find at least one disk Dl, after relabeling, satisfies that for every i < l, either
Dl ⊂ Di or Di ∩Dl = ∅.

Attaching this disk Dl to Σ along the corresponding boundary component, we obtain
a new (piece-wise smooth) surface Σ′ such that the genus g(Σ′) = g(Σ) and has l − 1

boundary components. We may then perturb Σ′ by a homotopy to obtain an embedded
surface Σ̃l ⊂ N homologous to Σ′, meeting ∂N transverally along ∂Σ̃l. Repeating this
process, we obtain a sequence Σ̃l, ..., Σ̃1, terminating at a closed surface Σ̃ = Σ̃1 with
genus g(Σ̃) = g(Σ), such that [Σ̃] = [Σ] ∈ H2(N, ∂N ;Z).

Lemma 4.6. For any α ∈ H2(M ;Z), we have

∥Φ(α)∥T ≥ ∥α∥T . (4.5)

Proof. Consider an embedded surface Σ ⊂ N representing Φ(α) ∈ H2(N, ∂N ;Z) such
that

χ−(Σ) = ∥α∥T .

By Lemma 4.5, we can assume that Σ is closed and doesn’t intersect ∂N . Finally, note
that we can construct a surface Σ′ representing the class α ∈ H2(M ;Z) by adding some
finite combination of the spheres S1, ..., Sk to the closed representative Σ ⊂ N \ ∂N =

M \
⋃k

i=1 Si of Φ(α). Since the spheres have zero Euler characteristics, we then see that

∥α∥T ≤ χ−(Σ
′) = χ−(Σ) = ∥α∥T ,

as desired.

Remark 4.7. We observe that any surface of genus 0 gives a trivial class in H2(N, ∂N ;Z).
Given any embedded surface Σ ⊂ N of genus zero, we may find a embedded sphere Σ̃ ⊂ N

homologous to Σ in H2(N, ∂N ;Z) which must be homologous to some combination of
S1, ..., Sk in M . Thus, Σ̃ is homologous to some combination of the components of ∂N ,
and consequently [Σ] = [Σ̃] = 0 ∈ H2(N, ∂N ;Z).

We now can combine the previous steps to see the following statement.

Theorem 4.8. Let (M3, g) be a closed, oriented 3-manifold. Then for any class α ∈
H2(M ;Z), we have

∥α∥T ≤ 1

4π
∥α∥H∥S−∥L2 . (4.6)

Moreover, if α cannot be represented by spheres, then equality implies that M is cov-
ered isometrically by a cylinder Σ × R over a closed surface Σ of constant non-positive
curvature.



28 Chapter 4 More on Applications

Proof. Given a class α ∈ H2(M ;Z), consider its image Φ(α) ∈ H2(N, ∂N ;Z) under the
map Φ : H2(M ;Z) → H2(N, ∂N ;Z) described above. Note that any surface of genus
zero in N induces a trivial cycle in H2(N, ∂N ;Z), and since N has minimal boundary,
the mean curvature of ∂N is zero. We may apply (4.3) to conclude that

4π∥Φ(α)∥T ≤ ∥Φ(α)∥H∥S−∥L2(N) = ∥Φ(α)∥H∥S−∥L2(M).

Since Φ decreases the harmonic norm but does not decrease the Thurston norm, we
conclude that

4π∥α∥T ≤ ∥α∥H∥S−∥L2(M).

Finally, note that if α cannot be represented by spheres, then Φ(α) ̸= 0. So that the
equality condition holds as same as the previous result.

Remark 4.9. In [22], Katz has also considered the application of harmonic S1-valued
maps to the study of the Thurston norm of 3–manifolds. The results given by Katz
related on the topological features of the maps, rather than their role as a mediator
between topology and geometry.

It is not hard to construct a family of metrics on M and giving the following geo-
metric characterization of the Thurston norm.

Corollary 4.10. Let (M3, g) be a closed, oriented 3-manifold. Then for any class α ∈
H2(M ;Z), the Thurston norm is given by the infimum

∥α∥T =
1

4π
inf
{
∥α∥H∥S−∥L2 | g ∈ Met(M)

}
, (4.7)

where Met(M) denote the space of all Riemannian metric on M .

Proof. Fix a non-trivial class α ∈ H2(M ;Z). Let Σ = Σ1 ∪ · · · ∪Σk be its representative
such that ∥α∥T = χ−(Σ). Since the sphere components make no contribution in the
negative part of Euler characteristic, without loss of generality, after relabeling, we may
assume that Σ1, ...,Σl are the torus components and Σl, ...,Σk are the components with
negative Euler characteristics.

Let δ > 0 small enough, consider a initial metric g1,δ on M which coincides on a
neighborhood of each Σi with the cylinder Σi × [0, 1], where Σi is flat with area δ if
1 ≤ i ≤ l. Moreover, if l + 1 ≤ j ≤ k, Σj has constant scalar curvature SΣj = −2 and
area

|Σj | =
∫
Σj

1 = −
∫
Σj

KΣj = 2πχ(Σj).

For r >> 1, let gr,δ be a metric which contains about each Σi a product region
Tr,i

∼= Σi× [0, r] and coincides with g1,δ on the complement E := M \
⋃k

i=1 Tr,i. We then
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see that ∫
M

(
S−
r,δ

)2
=

∫
E

(
S−
1,δ

)2
+

∫
⋃k

i=1 Tr,i

(
S−
r,δ

)2
= C(δ) +

k∑
i=1

∫
Σi

∫ r

0

(
S−
r,δ

)2
= C(δ) + 4r

k∑
i=l+1

|Σi|

= C(δ)− 8πr
k∑

i=l+1

χ(Σi)

= C(δ) + 8πr∥α∥T .

At the same time, we can define a map vr : M → S1 = R/Z in the homotopy class
dual to α by

vr(x, t) :=

 t/r, for (x, t) ∈ Tr,i

1, for (x, t) ∈ E.

Since the harmonic norm of α is the infimum of the Dirichlet energy go through all
harmonic 1-form with integral periods duals to α, We thus compute that,

∥α∥2H,gr,δ
≤
∫
M

gr,δ(∇vr,∇vr) =

k∑
i=1

1

r2
|Tr,i|

=
l∑

i=1

rδ

r2
−

k∑
i=l+1

r · 2πχ(Σi)

r2

=
1

r
(lδ + 2π∥α∥T ) .

Combining with the estimate of the L2 norm of the scalar curvature, we obtain

∥α∥2H,gr,δ
∥S−

r,δ∥
2
L2 ≤ 1

r
(lδ + 2π∥α∥T ) (C(δ) + 8πr∥α∥T )

= 16π2∥α∥2T + 8πlδ∥α∥T +
C(δ)(lδ + 2π∥α∥T )

r
.

For any fixed δ > 0, taking r → ∞ in the preceding estimate gives

inf
{
∥α∥H∥S−∥L2 | g ∈ Met(M)

}
≤
(
16π2∥α∥2T + 8πlδ∥α∥T

)1/2
,

and finally taking δ → 0 gives the desired result

∥α∥T =
1

4π
inf
{
∥α∥H∥S−∥L2 | g ∈ Met(M)

}
.



30 Chapter 4 More on Applications

4.2 Rigidity result of Homological 2-Systole

On a closed, oriented 3-manifold (M3, g), we define the homological 2-systole by

sys2(M) := inf
{
|Σ2| | Σ ⊂ M embeded, [Σ] ̸= 0 ∈ H2(M ;Z)

}
. (4.8)

We remark that the estimate (3.5) gives a short different proof of the following rigid-
ity theorem, originally proved by Bray–Brendle–Neves in [13] via the analysis of stable
minimal surfaces.

Theorem 4.11. On a closed, oriented 3–manifold (M3, g) with positive scalar curva-
ture (PSC for short) and nontrivial homology H2(M ;Z), we have

(minSM ) sys2(M) ≤ 8π, (4.9)

with equality only if M is covered isometrically by a cylinder S2×R over a round sphere.

Before proving this theorem, we first see the following statement immediately from
(3.5).

Corollary 4.12. Let u : M3 → S1 be a non-trivial harmonic map on a closed, oriented
3–manifold M with PSC. Then

2π

∫
S1

χ(Σθ) ≥
1

2
(minSM )

∫
S1

|Σθ|, (4.10)

where Σθ := u−1(θ) are the level sets of u for some regular values θ ∈ S1.

Proof. By (3.5), we directly have

2π

∫
S1

χ(Σθ) ≥
1

2

∫
S1

∫
Σθ

(
|∇2u|2

|∇u|2
+ SM

)
≥ 1

2
(minSM )

∫
S1

∫
Σθ

1

≥ 1

2
(minSM )

∫
S1

|Σθ|,

which yields (4.10).

Proof of Theorem 4.11. By definition of the homological 2-systole, let π0(Σθ) be the
connected components of Σθ, we then have

|Σθ| ≥ π0(Σθ) · sys2(M).
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Meanwhile, we note that χ(Σθ) ≤ χ(S2) · π0(Σθ) = 2π0(Σθ). By Corollary 4.10, we
obtain

4π

∫
S1

π0(Σθ) ≥2π

∫
S1

χ(Σθ)

≥1

2
(minSM )

∫
S1

|Σθ|

≥1

2
(minSM ) sys2(M)

∫
S1

π0(Σθ),

which follows that
(minSM ) sys2(M) ≤ 8π.

The equality condition holds if and only if M is covered by Σ× R isometrically for
some surfaces with constant PSC equal to SM . Since χ(Σi) must equal to 2, we know
that every components of Σ are round spheres.

4.3 Estimate of Hessian term

Let (Mm, g) be a closed, oriented m-dimensional Reimannian manifold with Ric ≥ 0

and the injective radius of M is positive. We now consider a non-trivial S1-harmonic
map u : M → S1.

On the set of regular points, we may analyze the Hessian term more closely,

∇|∇u|2 = 2∇2u(∇u, ·) ≤ 2|∇2u||∇u|.

On the other hand, we have

∇|∇u|2 = 2∇|∇u| · |∇u|.

Combining two parts, we obtain the Kato’s inequality,

|∇|∇u||2 ≤ |∇2u|2. (4.11)

Note that this holds for any S1-valued C2-map. However, a very important observation
is that when u is harmonic, we can improve it, see [23].

Lemma 4.13 (Refined Kato’s inequality). Let u : Mm → S1 be a harmonic map, then(
1 +

1

m− 1

)
|∇|∇u||2 ≤ |∇2u|2. (4.12)
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Proof. Choose an orthonormal frame (ei)
m
i=1 such that ∇u = |∇u|e1. We then have

∇|∇u| = ∇2u(e1, ·) and |∇|∇u||2 =
∑m

i=1∇2u(e1, ei)
2. Now, we compute

|∇2u|2 ≥
m∑
i=1

∇2u(e1, ei)
2 +

m∑
i=2

∇2u(e1, ei)
2 +

m∑
i=2

∇2u(ei, ei)
2

≥
m∑
i=1

∇2u(e1, ei)
2 +

m∑
i=2

∇2u(e1, ei)
2 +

1

m− 1

(
m∑
i=2

∇2u(ei, ei)

)2

≥
m∑
i=1

∇2u(e1, ei)
2 +

m∑
i=2

∇2u(e1, ei)
2 +

1

m− 1
∇2u(e1, e1)

2

≥
m∑
i=1

∇2u(e1, ei)
2 +

1

m− 1

m∑
i=1

∇2u(e1, ei)
2,

which complete the proof.

From (3.6), we can see the following truth.

Corollary 4.14. Let u : Mm → S1 be a non-trivial harmonic map. For any regular
point p ∈ M . Assume that there exists r > 0, such that the geodesic ball B2r(p) = {q ∈
M | d(p, q) < 2r} contained in the set of all regular points. Then∫

Br(p)
|∇2u|2 ≤ CM

∫
B2r(p)

|∇u|2, (4.13)

where CM > 0 depends on r and m.

Proof. Consider a cut-off function φ ∈ C∞
0 (B2r(p)), so that

φ(x) = 1, if x ∈ Br(p);

0 ≤ φ(x) ≤ 1, if x ∈ B2r(p) \Br(p);

φ(x) = 0, if x /∈ B2r(p);

|∇φ| ≤ C/r.

Taking ϕ = φ|∇u|1/2 and applying co-area formula in (3.6), we obtain∫
B2r(p)

(
|∇2u|2 +

(
SM − SΣ

)
|∇u|2

)
φ2 ≤ −

∫
B2r(p)

(
⟨∇(φ)2,∇(|∇u|2)⟩+ 2φ2|∇|∇u||2

)
.

From traced Gauss equation, since Ric ≥ 0, we find

|∇u|2

2

(
SM − SΣ

)
+ |∇|∇u||2 − 1

2
|∇2u|2 = Ric(∇u,∇u) ≥ 0,

which implies

|∇u|2
(
SΣ − SM

)
≤ 2|∇|∇u||2 − |∇2u|2 ≤

(
1− 2

m

)
|∇2u|2,
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where the last inequality we use the refined Kato’s inequality.
By Cauchy-Schwarz inequality, we compute that

2

m

∫
B2r(p)

φ2|∇2u|2 ≤ 4

∫
B2r(p)

φ|∇φ||∇u||∇|∇u||

≤ C2

εr2

∫
B2r(p)

|∇u|2 + 4ε

∫
B2r(p)

φ2|∇|∇u||2

≤ C(ε, r)

∫
B2r(p)

|∇u|2 + 4ε

∫
B2r(p)

φ2|∇2u|2.

Taking ε > 0 small enough, we thus obtain∫
Br(p)

|∇2u|2 ≤
∫
B2r(p)

φ2|∇2u|2 ≤ C(m, r)

∫
B2r(p)

|∇u|2,

which yields (4.13).

Remark 4.15. For the existence of such cut-off function φ on Riemannian manifolds,
one may check, for example, Schoen and Yau’s book [24] for details.

4.4 T 3 does not have PSC metric

It is well-known that any metric on Tn of non-negative scalar curvature must be
flat. This is of course from the classical results proved by Schoen and Yau [7], or another
proof by using Dirac operator methods given by Gromov and Lawson [4].

Here by using Stern’s idea, we find the following new proof of this result in the case
of three dimension given by Chodosh (see [23]).

Theorem 4.16. There is no PSC metric on T 3.

Proof. Assume that (T 3, g) has PSC. Let α be a harmonic representative of [dx1] and
let u : (T 3, g) → S1 be its non-trivial corresponding harmonic map. Recall the estimate
of ∆|∇u| in the proof of Theorem 3.8, we immediately find

0 =

∫
T 3

∆|∇u| =
∫
T 3

1

2|∇u|
(|∇2u|2 + |∇u|2(SM − SΣ))

>

∫
T 3

−1

2
|∇u|SΣ

=

∫
S1

−2πχ(Σ),

where the last equality we use the co-area formula and Gauss-Bonnet formula. We claim
that no component of Σ is an embedded sphere. Otherwise, assume Σ′ is an embedded
sphere component of Σ, then lifting everything to the universal covering and note that
ũ : (R3, g̃) → R is g̃-harmonic. By Alexander’s theorem (see [25], Theorem 1.1), Σ̃′
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bounds a ball B ⊂ R3. Note that u is constant on Σ′, thus we see ũ is harmonic with
constant boundary value in the interior domain of Σ̃′. By maximal principle, ũ (and thus
u) is constant everywhere, that’s a contradiction.

Thus, no component of Σ is a sphere and χ(Σ) ≤ 0, which contradicts to the previous
inequality.
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