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1. CANONICAL METRICS AND COMPLEX MONGE-AMPERE EQUATION

Let (X, w) be an n-dimensional compact Kihler manifold. Here X is an n-dimensional com-
pact complex manifold, and w is a positive closed real (1, 1)-form, which is called the Kéhler
form. Let (7', ..., z") be a local coordinate, then

w= V—lg,-;dzi AdZ,

where (gi;) is a Hermitian matrix.

Example 1.1. (1) The complex projective space (CP*, wrs) endowed with the Fubini-Study
metric is a Kihler manifold, where on each U, = {ZF # 0}

wrs = V=1801og(1 + 2.

(2) Any hypersurfaces V" = {F = 0} ¢ CP"*' where F is a homogeneous polynomial of degree
d is a Kéhler manifold with respect to wggly.
(3) The Euclidean form

wo = Z V=o1dZ* A dZF
k

is closed and invariant under translations. This induces Kihler forms on complex tori X =
C"/A, where A c R*" is a lattice.

Given a Kihler form w, we can define the associated volume form w". Let dV, be the
Riemannian volume form, then we have

The normal coordinate on Kéhler manifold will be useful in our calculation.
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Proposition 1.2 (Kihler normal coordinates). If w is a Kidhler metric, then for each point p and
an open neighbourhood U of p we can choose a local coordinate such that for any i, j, k

gij(p) =¢i;; and digy; = igi; = 0, (1.1)

where ¢;; is the Kronecker symbol.

The Ricci curvature of w can be defined by
Ric(w) = V—-1001og det(w).

Note that the Ricci curvature is a closed real (1, 1)-form. And, the scalar curvature R(w) :=
tr,, Ric(w) is the trace of the Ricci curvature.

Proposition 1.3 (90-Lemma). Let (X, w) be a compact Kihler manifold. Suppose « and S are
two closed real (1, 1)-forms that are cohomologous to each other. Then there exists a smooth
function u on X such that

a—-p= V=186u.

Fixed a Kihler class [w], thanks to dd-Lemma, the space of Kihler metrics in [w] can be
formulated by
H, :={pe C(X), w, = w+ V-18¢ > 0}.

Question 1.4. Can we find the “best” metric w,, in [w]?

In fact, we expect to find metrics with special curvature properties in [w], which often arise
as solutions to geometric PDE or critical points of energy functionals. There are some nice
candidates:

Definition 1.5 (Kihler-Einstein metric). A Kéhler metric w is called Kéhler-Einstein (KE for
short) if there is A € R, so that

Ric(w) = Aw.

Definition 1.6 (CscK metric). A Kihler metric w is called cscK if w has constant scalar curva-
ture.

Definition 1.7 (Extremal metric). A Kihler metric w is called extremal if V!°R is holomorphic.

Clearly,
{KE metrics} C {CscK metrics} C {Extremal metrics},

so the KE metric is the optimal choice for our Question 1.4.

Observe that if we have two Kihler metrics w and 6, then

det(6) )
det(w)

Ric(w) — Ric(0) = V-1 log(
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where the right-hand side is a globally defined exact (1, 1)-form.

Definition 1.8 (The first Chern class). The first Chern class ¢;(X) of X is defined by
1
a1(X) = ~[Ric(w)] € H"'(X,R).
Vi

Once we have a KE metric w with Ric(w) = Aw, by taking cohomology class on each sides,

A
a(X) = —lw].

Since [w] > 0 is a Kihler class, the existence of a KE metric necessitates a definite sign of

ci1(X).

Example 1.9. Let X = CP' xS, where S is a compact Riemann surface of genus 2. Then ¢;(X)
does not have a definite sign.

Proposition 1.10. Let X be an n-dimensional compact Kihler manifold and Aw € 27¢(X) for
some A € R. Denote by w,, := w + V—180¢. Then the following statements are equivalent:

(1) w, is a Kdhler-Einstein metric;

(2) w, is a Kdhler metric with constant scalar curvature;

(3) ¢ solves
(a) + V—lé@go)n = ¢ Wthyy (MA))

for some smooth % : X — R such that Ric(w) = Aw + V—190h.

Proof. (2) <= (1): If w,, is cscK and Aw, € 2rc,(X), then there is f € C*(X) such that
Ric(w,) = dw, + Y-184f.

Taking trace w.r.t w, gives A,f = 0. This concludes f = constant and w, is KE, since there
are no non-constant harmonic functions on compact manifolds.

(3) & (1): Assume w,, is KE. Since Aw, € 2rc(X), there is h € C*(X) such that Ric(w) =
Aw + V=190h, and

Ric(w,) = Aw, = Ric(w) — V=180h + V-1301¢.
This implies
_ (W, _
\/—109(—“’) = V=180 (™),
w}’l
as desired. Conversely, we take V—134 to both sides of (MA ) which yields w, is KE. O

The solvability of (MA)) is well-known: :
(1) If c;(X) < 0, X is of general type, a problem solved by Aubin [Aub76] and Yau [ Yau78];

(2) If ¢1(X) = 0, X is Calabi-Yau, as solved by Yau [Yau78];
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3) If ¢1(X) > 0, X is Fano, there are some obstructions for the existence of KE metrics,
introduced by Matsushima [Mat57], Futaki [Fut83], and Tian [Tia97]. It was proven by
Chen-Donaldson-Sun [CDS15a, CDS15b, CDS15c¢] that the K-polystability of a Fano
manifold is equivalent to the existence of a KE metric.

Question 1.11. What about the “singular” case? Can we solve (MA )?

In practice, “singular’” may refer to three different sources:
(i) the underlying space X is singular (a Kiahler variety: X, carries a Kihler form);

(i1) the background class is only semi-positive / big, so the representative w may be degen-
erate (not Kéhler);

(iii) the potential ¢ is not smooth (e.g. merely psh, hence in L!).

All three viewpoints lead to the same weak complex Monge-Ampere problem once we for-
mulate it in the non-pluripolar sense. We provide a brief explanation here, with a more detailed
discussion to follow in a later section.

Fix a closed semi-positive (1, 1)-form (or current) € on X and consider
(O +ddp)"y = e p, (SMA)

where ¢ € PSH(X, 0), 1 € R, f € L” is given, and y is a fixed positive measure. Here () denotes
the non-pluripolar Monge—Ampere product, which puts no mass on pluripolar subsets.

From (i) to (ii) + (iii) via resolution. Let Y be a Kihler variety and let 7 : X — Y be a
resolution. A Kéhler form wy on Yy, pulls back to a closed semi-positive form 7wy on X that
is degenerate along the exceptional directions. Choosing a smooth representative

0 € n'lwy]l c H'(X,R),
the equation on Y is equivalent to (SMA) on X with a right-hand side measure
u = (W) - e/°™ . (divisorial density coming from the Jacobian),

and the unknown potential replaced by ¢ o n. Equivalence follows from functoriality of the
non-pluripolar product and the fact that it charges no mass on analytic sets (hence nothing is
lost on Y, ).

Moving singularities between the background current and the potential function. Within
a fixed cohomology class, we can always take 6 smooth. Indeed, if € is a closed positive current
and 6, is a smooth form with [6y] = [6], then

6o = 0 + dd“y  for some (quasi-psh) ¢,

and setting @ := ¢ —  gives
6o +ddp = 0+ddop,
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so (SMA) is unchanged while the singularity has been moved from the background current to
the potential. Thus case (ii) and (iii) are just two faces of the same weak MA equation in a fixed
cohomology class.

In summary, whether the singularity sits in the space, the background form, or the potential,
the appropriate notion of solution to (SMA) is the same: a 6-psh potential ¢ solving (SMA) in
the non-pluripolar sense, typically sought in the finite energy class E'(X, 6).

2. QUASI—PLURISUBHARMONIC FUNCTIONS

2.1. Basic definition. Let (X, w) be a compact Kidhler manifold. We abbreviate the adjective
“plurisubharmonic” as “psh”. From now on, we will use the convention

1 - 1 -
d° = £(0 - 0), dd° = £88,

2 b4

so that dd“ maps real-valued functions to real (1, 1)-forms/currents.

Definition 2.1. Let 0 be a closed real (1, 1)-form.

e We say a function u# : X — R U {—c0o} is quasi-psh if u can be locally written as the sum
of a smooth function and a psh function.

e We say a function u# : X — R U {—o0} is 6-psh if u is quasi-psh and 6, = 6 + ddu > 0 in
the sense of current. We denote PSH(X, #) by the space of all -psh functions on X.

Example 2.2. Consider 6 > 0, there are plenty of examples of 8-psh functions:

e If 0 = wis Kihler and u € C?(X), then there exists A >> 1 so that
Aw + ddu > 0,
which gives u/A € PSH(X, w).

e Let X = P" and let @ = wps. If P is a homogeneous polynomial of degree d in z € C**!,
then

1
¢(2) = ~ log|P|(z) —logz| € PSH (", wrs) .

More generally if L — X is a positive holomorphic line bundle with metric & = ™ of
curvature w = ®;, = dd‘¢ > 0 and if s € H°(X, L), then

¢(z) = log|sl, = log|s| — ¢ € PSH(X, w).

e Let B C C" be a ball centered at the origin. Functions log|z|, —(—log|z|)* for0 < @ < 1
and —log(—log |z|) on B are all 8-psh functions.
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Proposition 2.3. Assume X = P" = C" U {7y = 0} endowed with w = wpg. Consider
L(C") := {u € PSH(C"), u(z) < %log(l +[2?) + C forall z € C"}.
Then there is a one to one correspondence

1
ue LC) o u-3 log (1 + |'[*) € PSH(P", w).

Proof. Work on the affine chart Uy = {Z, # 0} =~ C" with coordinates z; = Z;/Z,, and set
H, = P \ UO = {ZO = 0} Let

¢o(2) := 1log (1 +Iz1°), wrs = dd°¢y on Uj.

Given u € L(C"), define on U,
@o 1= u — do.
Since u 1s psh, ddpy + wrs = dd‘u > 0 on Uy, so ¢ 1S wps-psh there. The growth u < ¢y + C
implies a uniform upper bound ¢, < C even near H.,,, hence the usc extension
¢ :=(go)" onP"
is well defined and ¢ is wgg-psh. This yields the map u — ¢ € PSH(P”", wgs).
Conversely, let ¢ € PSH(P", wrs). So, ¢ < C on P". On U, define

u:= @+ go.
Then dd‘u = dd“¢p+dd ¢y > —wrs +wrs = 0,s0uispshon C", and u < ¢py+C, i.e. u € L(C").

On any other affine chart U; one uses the local FS potential ¢; with dd“¢; = wrs; on overlaps
¢o — ¢, 1s pluriharmonic, so the above constructions glue. Finally, starting from u gives ¢ with
¢ly, = u — ¢o, hence (¢ + ¢o)ly, = u; starting from ¢ gives u = ¢ + ¢y and then (u — ¢p)* = ¢.
Thus the correspondence is bijective. O

Remark 2.4. Equivalently, the growth condition defining £(C") can be phrased as: the “Lelong
number at infinity” of u (with respect to the weight ¢) is at most 1/2. This is precisely the
condition ensuring that u — ¢y does not blow up to +oco along the hyperplane at infinity H,,, so
it extends as an wgs-psh function on P".

Definition 2.5. A subset P C X is pluripolar if for any x € X, there is an open neighborhood U
of x and a function ¥ € PSH(U) such that

Ylpay = —oo.

We say some property about objects on X holds quasi-everywhere (q.e.) if it holds outside a
pluripolar set.

Theorem 2.1 (Josefson’s theorem). Assume that X is a compact complex manifold and P C X
is a pluripolar set. Then there is a quasi-psh function ¢ on X with ¢|p = —co.
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We also have:

Proposition 2.6. Let u,v € PSH(X, 8). Assume that there is a dense subset E C X such that
u<v on E,

then u < von X.

2.2. Lelong numbers. Singularities of quasi-psh functions are at worst logarithmic thanks
to the Lelong-Jensen formula and sub-mean value property. An intuitive picture is that psh
functions are subharmonic when restricted to each complex line, and the subharmonic functions
have only logarithmic level singularities in real dimension 2. We can then use the Lelong
number to measure how “singular” a quasi-psh function is, at each point:

Definition 2.7 (Lelong number). Let X be a compact complex manifold and let 6 be a closed
real (1, 1)-form.

(1) The Lelong number of u € PSH(X, 6) at p € X is defined by

v(u, p) = sup {y > 0; u(z) < ylog(d(z, p)) + O(1)}.

(2) Let T be a positive closed (1, 1)-current such that [7] = [6]. The Lelong number of T
at p € X is defined by

| wT.p) = vu,p), |

where u is 6-psh s.t. T = 6 + dd‘u.

Remark 2.8. Equivalently, in local coordinates z centered at p,

v(T,p) = lim T A (dd log(d(z, p)"~".
"0 Nz, py<r)

Some nice properties for Lelong numbers, thanks to Siu, are:

Theorem 2.2 (Siu, [Siu74]). Let X be a compact complex manifold, and let u be quasi-psh.
Then

e the function x — v(u, x) is usc and invariant under local biholomorphism;

o sets E.(u) = {x € X, v(u, x) > c} are analytic for each ¢ > 0.

Theorem 2.3 (Siu’s decomposition, [Siu74]). Let X be a complex manifold and 7 a positive
closed (1, 1)-current on X. Then there exist nonnegative numbers A; (locally only finitely many
nonzero), irreducible divisors D; C X, and a positive closed (1, 1)-current R such that

T = > 4D + R,
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where [D;] denotes integration along D;, and R has zero generic Lelong number along every
divisor (equivalently, R has no divisorial component). Moreover, for each i,

A; = v(T,x) fora generic point x € D;.

Corollary 2.9. Let X be a complex manifold with dimX > 2, let x € X, and let « : X =
Bl, X — X be the blow-up at x with exceptional divisor E = n~!(x). For any positive closed
(1, 1)-current T on X,

v(T,x) = sup{y >0; n"T —y[E] is a positive closed (1, 1)-current on )?} .

Proposition 2.10 (Properties of Lelong numbers). Let u,v € PSH(X, #), 4 > 0 and x € X. Then
() v(Adu, x) = Av(u, x);
2) v(u+v,x) =v(u, x) + v(u, x);

(3) v(max{u, v}, x) = min{v(u, x), v(v, x)}.

Definition 2.11 (Lelong number of a class). The Lelong number of a class [6] is defined by

’ v([0]) := sup{v(u, x); x € X and u € PSH(X, 6)} < +c0, ‘

which only depends on the cohomology class [6].

2.3. Skoda’s integrability. It is clearly that PSH(X,6) c L'(X). Moreover, u € LP(X) w.r.t.
any smooth volume form. This fact can be shown by Skoda’s integrability."

Theorem 2.4 (Skoda, [Sko72]). Let X be a compact complex manifold, and let 6 be a closed
(1, 1)-form. Assume ¢ € PSH(X,6) and A < 2 [sup,.y v(¢, x)]_l. Then exp(-Ap) € LY(X).
Moreover, if A < 2v([6])~', then

sup { f e™%dV | ¢ € PSH(X, 6) and sup ¢ = 0} < +0o0. 2.1
X X

We then decompose u = u™ — u~, since u is bounded from above, we only need to verify that

u- € LP(X). Indeed,
f lu|” dV < Cps f (1+e“yav
X X

= CpﬁVOl(X) + Cp’(; f e—ﬁu . 66(u+) dv
X

< 400

b

for some & < 2 [sup,, v(¢, x)] ', thanks to Skoda’s integrability and boundness of u*.

'We are cheating here, because the exponential integrability (Skoda’s integrability) is stronger than polynomial
integrability (L? property). In fact, the L? property is a direct consequence of the sub-mean value property for psh
functions.
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2.4. Hartogs lemma and Montel property. We also have the following Hartogs lemma and
Montel property for 8-psh functions.

Theorem 2.12 (Hartogs lemma). Let X be a compact complex manifold and let 8 be a smooth
closed (1, I)-form on X. Suppose (u;);>1 C PSH(X, 6) satisfies supy u; < C for some C € R and
all j. Set

u:= (limsupu;)’,
j—oo
the usc regularization of the pointwise lim sup. Then either u = —oo, or else
(1) u € PSH(X, 9),

(ii) there is a subsequence u;, — u in L'(X, dV) with respect to any smooth volume form dV.

Corollary 2.13 (Montel property). Let X and 6 be as in Theorem 2.12. For all A > 0, the sets
PSH4(X, 0) := {u € PSH(X, 60, —A <supu < 0}
X

are compact in L!-topology.

Proposition 2.14. We have the following properties for -psh functions:

(1) If (u ,-)j C PSH(X, 6) and u; N\, u # —oo, then u € PSH(X, 6).

(2) If (u j)j C PSH(X, ) is uniformly bounded from above and u; ,” u, then u* € PSH(X, 6)
and u = u* almost everywhere. Here

u*(z) = lim sup u(w) = inf sup u
woz >0 B,(2)

is the usc regularization.

(3) Let (4a)eea € PSH(X, 0) be uniformly bounded from above, then

acA

U = (supua) € PSH(X, 6).

4) If ¢, € PSH(X, ), then log (e* + ¢¥) , max{¢p, ¢} € PSH(X, ).

(5) If ¢ € PSH(X, 6), y € C*(X) such that y”” > 0 and 0 < y’ < 1, then y o ¢ € PSH(X, 6).
Proof. See Demailly’s book [Dem12]. O

Remark 2.15 (Choquet’s lemma). In (3), the index set A can be arbitrary. Moreover, there
exists a countable subfamily (u;) with u; € {u, : @ € A} such that

[sopie) = (sup)
a€A j=1
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2.5. Demailly’s regularization. A cohomology class @ € H"!(X,R) is called Kihler if there
is a Kéhler form w € . Besides,

Definition 2.16. Let (X, w) be a compact Kihler manifold and let « € H"!'(X,R) be a real
(1, 1)-cohomology class.

(1) We say that a is pseudo-effective (psef) if it contains a closed positive (1, 1)-current.
Equivalently, for any smooth closed (1, 1)-form 8 € a, PSH(X, ) # 0.

(2) We say that « is big if it contains a Kéhler current, i.e. for any smooth 6 € a, there
exists € > 0, and u € PSH(X, 6) such that

0+ dd‘u > gwy (ascurrents).

Equivalently, for any some smooth 6 € « there is € > 0, one has PSH(X, 6 — ew) # 0.

(3) We say that « is nef if for any 6 € @, € > 0, there exists smooth ¢, s.t. 0+ddV, > —cw.

Remark 2.17. The set Big(X) ¢ H"!'(X,R) of big classes is an open convex cone (the big
cone). The set Psef(X) of pseudo-effective classes is a closed convex cone, and one has

Big(X) = Psef(X).

Definition 2.18. Given u, v € PSH(X, 0).
e We say u <, v (u is more singular than v), if 3C > 0, s.t. u <v + C.

e We say u ~ v (u is as same singular as v), if u <, v and v <, u.

The relation <, here is just a partial order, for instance, on B; C C" and 6 semi-positive,
one can not compare u; = log|z;| and u, = log|z,| with u;,u, € PSH(B,#). The equivalent
relation u ~ v gives the class [u] = {v € PSH(X, 6), v ~ u} which is called the singularity type.
As a convention, in this note, we will write [u] < (=)[v] if u Zne (~) V.

Theorem 2.5 (Demailly’s regularization [Dem92]). Let (X, w) be a compact Kéhler manifold
and let 7 be a closed positive (1, 1)-current on X. Set @ := [T] = [6]. Then there exists a
sequence of closed (1, 1)-currents
Tj = 0+ddc(,0j € «,
N;

1
with analytic singularities (i.e. locally ¢; = — log E | fj,kl2 + O(1)), such that
m; k=1

(1) T; — T weakly and the potentials decrease: ¢; \, ¢;
2) T;>-gjwwitheg; | 0;
(3) the cohomology class is preserved: [T;] = [0] = a;

(4) forall x € X, (T, x) < v(T, x) and v(T';, x) = (T, x).
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Moreover, if the class « is big, then there exists a current
Thas =0+ddy e a

with analytic singularities such that Ths > € wy for some £ > 0 and some Kihler form w, on X;
in particular T»g is a Kéhler current with analytic singularities.

A direct consequence is:

Corollary 2.19. Given ¢ € PSH(X, w), then there exists a smooth family {¢;} of strictly w-psh
functions, s.t. ¢; \, ¢. In fact, PSH(X, w) is the closure of the set K, of all Kéhler potentials
in L.

Theorem 2.20 (Demailly’s approximation). Let (X, L) be a polarized compact complex man-
ifold and let 4 be a smooth Hermitian metric on L with curvature w = ©, > 0. For any
¢ € PSH(X, w) there exist a sequence of sections ?; € H°(X, L®) such that

1 L
= logltjli — .
i j—oo

Remark 2.21 (Why this is a big deal). This theorem algebraizes quasi-psh weights: every
w-psh potential is an L'-limit of Bergman weights built from global sections of high tensor
powers of L.

Definition 2.22 (Ample locus). Let [6] € H'!(X), the ample locus of [6] is defined by

Amp([6]) = {x € X, A ¢, s.t. 6, is Kihler in a neighborhood of x}

It follows from our previous discussion,
fis big < Amp(6) # 0.

Moreover, Amp([6]) is Zariski dense in X (Boucksom [Bou04]), i.e. Amp([8]) N U # 0 for
every non-empty Zariski open set.

3. NON-PLURIPOLAR MONGE-AMPERE MEASURES

Let (X, w) be a compact Kédhler manifold and let 6 be a smooth closed real (1, 1)-form whose
cohomology class [6] is big. WLOG, we assume Vol([6]) := fx @" = 1 after normalization. For
any u € PSH(X, ), we want to define the Monge-Ampere measure of u, that is

MAy(u) := 6, = (0 + ddu)".
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3.1. The C®-case. If u € C*(X)NPSH(X, 6), then 6, is a smooth form. We can define the MA
measure by

MAy(u) = 6,
a smooth positive measure (volume form) on X. The construction is local and multilinear, hence
Stokes’ theorem yields the cohomological identity

[o= e
X X

Moreover, if u is merely C°, one can still choose a C*-approximation u; — u uniformly, so
that the MA measure MAy(u) can be defined by the limit of the MA measure MA(u):

* .
6, — 0, as k— oo inthe sense of measure.

We also underline that the limit is independent of the choice of the C*-approximation, thanks
to Stokes’ theorem:

Lemma 3.1. Let u,v € PSH(X, 6) N C*(X), and let y be any test function. Then
f)(MAe(u) - f)(MAe(V) < Cm)llu =Vl - lxllc2- (3.1
X X

Proof. 1n fact,
MAg(u) - MAG(v) = dd“(u—v) A (B A+ A0,

v

Hence,
[ et - Mason| = [ = a (e e ner)
X X
< f(u —v)ddy NG A A g
X
<C@)lue = vl - lxllc2,
which completes the proof. O

Consequently, for any two different approximations, the resulting MA measures are the same.

Example 3.2. Let X = P" with the Fubini-Study metric w. In homogeneous coordinates
[Zo:---:2,], set
w(Z)) = loglzl — Ylog( Y 1Z), ¢ = maxu;
k=0

0<i<n

Then ¢ € PSH(X, w) N C°(X). Define

n

Y, = € log( Z e”"/g), e>0.

i=0
Each ¢, € PSH(X, w) N C*(X), and ¢, \, ¢ pointwise as € | 0. Since ¢ is continuous, the MA
measure MA,,(¢) is well-defined, and

MA,(p) = lif(l)l MA,(p) = lilrg (w+ddp,) in the sense of measure.
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Thus MA,,(¢) is a MA measure in the sense of C° w-psh functions.

Let H; = {Z; = 0} be the coordinate hyperplanes. By Poincaré—Lelong, ddu; = [H;] — w,
hence on the open region where #; > max j,; u; one has

w+dd¢ = w+ddu; = [H],

which vanishes on that region (as a current), so MA,(¢) carries no mass there. Consequently,
the measure can only live on the ridge where at least two u; tie. To produce an (n, n)-measure
one needs all n+1 terms to tie, i.e.

Zo] =+ = |Z,.
This locus is the Clifford torus
T" = {[Z)eP": |Zl = =1Z]} = (§)"

Since ¢ is invariant under the torus action (S )"*!/S!, the measure is the Haar measure on T".

3.2. The L*-case: Bedford-Taylor theory. In this subsection, we explain how the wedge
product is constructed when the potentials are locally bounded, as developed by Bedford and
Taylor [BT76,BT82] on C", and then globalize to 6-psh functions on compact Kéihler manifolds.

Let U c C" be open, let T be a positive closed current of bidegree (n — p,n — p) on U, and
let uy, ..., u, be bounded plurisubharmonic functions on U (1 < p < n). Define inductively

To =T, T, :=ddu,Ty-1) (1 <m<p),
where the product u,, T,,; is the current acting on test forms ¢ by
U Tinr, ) 1= (Tints U @)

Hence, for every smooth compactly supported test form ¢,

(dd UnTm-1), @) = (Tp-1, ty dd ).
The Bedford-Taylor wedge of u,, ...,u, against T is

dduy A---ANddu, NT :=T),.

Equivalently, for every smooth compactly supported function y (i.e. a test (0, 0)-form) on U,

dduy N+ Nddu, NT, x) ={dduy A--- Nddu, AT, uy dd‘y). (3.2)

We can verify that each T, is closed and positive; it suffices to check 7. For closedness, for
any test form ,

dT, ) = (dd"(u\T), d) = (u, T, dd(dy)) = 0,
since dd‘d = d dd¢ and d*> = 0; hence T} is closed.

For positivity, let u(lk) \ 41 be a sequence of smooth psh functions. By Leibniz’ rule and the

closedness of T,
T = dd*WT) = ddu’® AT > 0.
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If ¢ is a smooth strongly positive test form of bidegree (p — 1, p — 1), then

(TV, ¢y = (T, dd°ul’ A ¢) > 0.
Recall that for any (1, 1)-form, the strong positivity is equivalent to positivity, so dd"u(lk> A
is still strongly positive provided ¢ is a strongly positive test (p, p)-form. We refer interested

readers to check Demailly’s book [Dem12] for details about the positivity of forms/currents.

Moreover, since the u(lk) are uniformly bounded and ugk) — u; pointwise, by dominated
convergence with respect to the trace measure of 7 we have
(T}°,¢) =T, i dd¢) — (T, uidd‘¢) = (dd‘T), $) = (T, ).

Thus Tik) — T, weakly, and since the weak limit of positive currents is positive, T is positive.

The same argument applies inductively to T,.

Proposition 3.3 (Local Chern-Levine—Nirenberg inequality). Let U c C" be a bounded do-
main and K cC U be a compact set. Fix the standard Kihler form w, = g Yie1dzj A dz).
Then there exists C = C(U, K, n) > 0 such that for any u,...,u, € PSH(U) N L*(U),

fdd"ul A Nddu, < C l_[||uj||L°°(U)-
K j=1

Proof. Choose cutofIs xo, x1, ..., x» € C2(U) with
O<yo<---<x,.<1, «=1onkK, yr=1onsuppddyi (0<k<n).

For 0 <k <nset
I, = f)(k dduy A - ANddu, A a)g_k.
U

We claim that there exists A = A(U, {xx}, n) such that for 1 < k <n,
I < Alluglli=wy Te-1- (3.3)
A"([T%, llujllco) o, and since I, = [ ddu; A --- A dd‘u,

j=1
fU Xowy is a fixed constant, the proposition follows with

IA

Granting this, iterating gives I,

(because y, = 1 on K) and I,
C = Anl()

It remains to prove (3.3). Let
Sy :i=dduy A+ Adduy A w7,
a positive closed (n — 1,n — 1)-current. Hence
I, = f u (ddxi ) NSk < luellz=w) f ldd x| A Sk.
U U

Because ddy; is smooth with compact support in {y;—; = 1}, there exists a constant B =
B(xx, wo) such that the smooth (1, 1)-form inequality dd“y; < B y-1 wo holds. Wedge with
the positive current S, and integrate to get

f |ddc)(k| A Sk < Bf)(k_l wo A Sk = Bf/\/k_l ddcl/tl VANRERIVAN ddcbtk_] A (.U(;l_(k_l) = Blk_l.
U U U

Combining the above inequalities yields (3.3) with A := B. O
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Remark 3.4. The CLN inequality is still true if u; is only L;°

loc*

Example 3.5. In this example, we write r = |z|, and consider the MA measure on C".
(1) Let u = log|z|, then (ddu)" = ¢,. Consider the smooth regularization
1
us(z) := 3 log(r* + &%) Py log .

A direct computation gives

1 1 V=10r% A 0r* V-1 <&
ddcugz—(—a)——;), w()I:—Zde/\de.
b4 =

W™ 7 (rr+&2)?

Wedge to the top degree (radial rank 1 computation) yields a smooth radial probability
density:

c n n!sz 1 n c n
d'we)' = = o gyt fc (ddu) = 1.

Hence (dd‘u.)" - opase | 0,i.e.

| (dd“log2)" = 6. |

(2) Let u = max{log|z|, 0}, then (dd‘u)" = og2-1. Consider
us(r) 1= elog(e'*¢"'% + &Y%) = glog(1 + r'/*) N\, max{log r, 0}.

Each u, is smooth, radial, psh and bounded on compact sets. By a boring computation,
: 1d, d

(ddug)" = f:(r)dV,, with  f.(r) = ——(l’ -

rdr\ dr

for an explicit normalizing constant ¢, chosen so that fcn(dd"ug)" = 1. A direct differ-

(1) o

entiation shows f; concentrates at r = 1. More precisely, for any ¢ € C°(C"),

f¢(ddcug) V1(s2n 5 pdoc as &]0.

S 2n—1
Hence

(dd°u)" = normalized Lebesgue measure on S .

1 o
(3) Consider u; = 3 log(1+|z+z)])) — u = max{log|z|,10g |z2|, 0} on C2, then (dd“u)* =
Ogixsi, While (ddcuj)2 = 0. First, u; € PSH(C?) N C* and

1

ddcujzz_jF;wFS’ Fj:[l,Z{'FZé]:CZ—)Pl.

Since P! has complex dimension 1,

(ddu ) Fi(wrs A wrs) =

4 2
For the limit, note that for fixed (z;, 22),

1 o
% log(1 + Iz} + z)]*) — max{log |zl, log |zl 0} in L'.
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As the same as Example 3.2, its MA measure concentrates where
lzil=ll=1 < S'xS',

and by U(1)?>~invariance it is the normalized Haar measure on §' x §'!:

(ddu)* = normalized Lebesgue measure on S Ix st

Remark 3.6. Example 3.5 (3) shows that u; — u in L', while 0 = (dd‘u;)* + (dd‘u)*. This is
because u — MA(u) is discontinuous in L'-topology. However, u — MA,(u) is continuous for
monotonic sequence (for u; N\, u, almost by definition; for u; ,” u, by [BT82]).

Theorem 3.1 (Comparison principle). Let Q € C" be a bounded domain and let u, v € PSH(Q)N
L=(Q). Assume liminf,_(u — v)(z) > O for all £ € Q. Then

@ddvy" < (ddu)".

{u<v} {u<v}

In particular, if (ddu)" < (ddv)" in Q and v < u on 0Q, then v < u in Q.

Theorem 3.2 (Dirichlet problem). Let B := {z € C" : |z| < 1} and assume u € PSH(B) N L>(B).
Then there exists a unique v € PSH(B) N L*(B) such that

(1) Blimf v(z) = u(é) for every € € 0B;

(2) (ddv)* =01in B.

Now, let X be a compact complex manifold and let 6 be a smooth, closed, real (1, 1)-form. Fix
an open cover {U,} and choose smooth local potentials ¢, with dd“y, = 6|y,. If u € PSH(X, 6)
is bounded, then u, := u + i, is a bounded psh function on U,. By Bedford—Taylor theory, we
can define on each chart

MAg(u)|Ua = (dduy,)".

On overlaps U, N Ug, we have Y3 = ¢, + h with dd°h = 0, hence ddug = dd“u, and therefore
(ddug)" = (ddu,)". Thus these local measures glue to a global positive Radon measure on X,
denoted

MAy(u) := (6 + dd‘u)".

By multilinearity of the Bedford—Taylor product and the smoothness of 6, the binomial identity
holds (in the sense of currents):

0 +dduy' =y (’Z) 0% A (ddu)",

k=0
where (ddu)* is the Bedford—Taylor wedge product. Moreover, The BT construction also tells
us: for u;, € PSH(X, 6) N L*(X), the mixed MA measure

Oy N+ A6,

is a well-defined probability measure.
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Proposition 3.7. Let u,v € PSH(X, 6) N L*(X). Then:
(1) (Locality) If u = v on an open set U C X, then 1; MAy(u) = 1y MAy(v).
(2) (Monotone convergence) If u; ™\, u is a uniformly bounded sequence in PSH(X, 6), then

(0 +ddu;)" = (0+ddu)".

(3) (Cohomological mass) If 8, := 6 + dd“u > 0 globally, then

f(0+ddcu)” = f@”.
X X

A direct consequence of Theorem 3.2 is:

Corollary 3.8. Let (X, w) be a compact Kihler manifold, and let B, be a ball with radius r
small. Suppose u € PSH(X, w) N L*(X), then there exists a unique v, € PSH(X, w) N L*(X), s.t.

() v,=uin X\ B,;
(2) W) =0inB,.

Moreover, v, > uand v, \yuasr | 0.

Proposition 3.9. Suppose f € C*(X). Let
P,(f) := (sup{u € PSH(X,w), u < f})".
Then P,(f) € PSH(X, w) N L*(X), and

MA (P, (1)) = Lip =5y MAL(P,(f))

Proof. We omit the subscript w for convenience. Let B, C {P(f) < f} be a small ball, such that
MA(P(f)) # 0 on B.. Then by Corollary 3.8, there exists a unique v, with MA(v.) = 0 in B,
and v, = P(f)in X \ B.. Since v, \, P(f) as € | 0 and P(f) < f on B, there exists A > (0 small
enough, s.t. v. < f for € < A in B.. Hence, v, is a candidate in the envelope and v. < P(f).
Consequently, v. = P(f) and MA(P(f)) = MA(v.) = 0 which is a contradiction. Our result
then follows from Proposition 3.7 (1) directly. O

3.3. The singular case: BEGZ’s construction. Let u € PSH(X, 0) be arbitrary (possibly
singular). Following [BEGZ10], we define the non-pluripolar Monge—Ampeére measure of u by
truncation against the minimal singularity potential Vj. For each j € N, set

u” = max{u, Vy — j} € PSH(X, 0),
which is locally bounded on Amp(6). Then the Bedford—Taylor measure
0+ ddu’y"
is well-defined on Amp(0). We extend this measure by zero to X \ Amp(6) and set

Wi = s,y (0 +ddu?)".



PLURIPOTENTIAL THEORY ON KAHLER MANIFOLDS 19

By positivity and locality, (u;); is increasing in j, hence converges in the weak topology of
measures. We define

((O+ddw)") := lim y;, MAy(u) = (0 +ddu)"). (3.4)
Jj—ooo

Proposition 3.10 (Boucksom-Eyssidieux-Gued;j-Zeriahi, [BEGZ10]). For every u € PSH(X, 0),
the measure MAg(u) = (6 + dd‘u)") satisfies:

(1) (No mass on pluripolar sets) MA,(u) does not charge pluripolar sets. In particular, it is
supported in Amp(6).

(2) (Consistency) If u is locally bounded on an open U C X, then
1y MAy(u) = 1y (0 +ddu)"
in the sense of Bedford—Taylor.
(3) (Monotone continuity) If u; ~\, u in PSH(X, 6), then MAy(u;) R MAy(u).

(4) (Mass bound and volume) One always has

0< fMAg(M) < Vol([f]) := sup {f(9+ddcg0)”: ¢ € PSH(X, 0), ¢ < 0}.
X X

If u has minimal singularities (e.g. [u] = [Vy]), then equality holds:

f MA,(u) = Vol([8]).
X

The construction (3.4) is independent of the choice of the representative of [#] and of the
choice of Vy. If u is smooth with 6, := 6 + dd“u > 0, then MAy(u) = 6. If u is locally bounded
on Amp(6), then MAy(u) coincides there with the Bedford—Taylor measure and vanishes on
X\ Amp(6¢). From now on, we will write 6 as the non-pluripolar MA measure of u € PSH(X, 6)
directly. Most properties for MA measures in the BT sense are still true for no-pluripolar
MA measures. The following mixed MA measure inequality was a generalization of [Din09,
Theorem 1.3] from the BT sense to non-pluripolar sense.

Theorem 3.3 ([BEGZ10]). Let T4, ..., T, be closed positive (1, 1)-currents, let u be a positive
measure and assume given for each j = 1, ..., n a non-negative measurable function f; such that

Then we have

Ty A AT, 2 (fie )" (3.5
The non-pluripolar MA measure has an Isc property.

Theorem 3.4 (Darvas-Di Nezza-Lu, [DDNL18a]). Let (X, w) be compact Kdhler, 6 a big class.
Assume u;,u € PSH(X, 0) with u; \, u, f; > 0 be quasi-continuous on X, locally uniformly
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bounded on Amp(6), and f; ~\, f uniformally on Amp(6). Then

lim_infffjéff,szez.

Y b'e ToJx

limsupfgﬁ_éfez,
j x X

* .
then #, — 6, in the sense of measure.

Moreover, if

Remark 3.11. This result is still valid if we replace u; ™\, u pointwisely with u; — u in Capg,q)z.

An important property for the MA measure w.r.t §-psh functions with different singularity
types is that:

Theorem 3.5 (Witt Nystrom, [Nys19]). Assume u,v € PSH(X, 8) with [u] < [v], then

f%sf%. (3.6)
X X
fq:f@, 3.7)
X X

Remark 3.12. The comparison property (3.6) is still true if we replace & by 6, ,, A -+ A 6,,,
for 6; big and u; € PSH(X, 6;), see [DDNL18a].

Moreover, if [u] = [v], then

Usually, the same mass of Monge-Ampere measure generally can not imply the same sin-
gularity type of potential #-psh functions. For instance, consider 6 is Kéhler and v = 0,

u=—(—loglz])* for 0 < @ < 1, then
[z [
X X

However, u + v since u is unbounded. To see that, fix p € X. For 0 < @ < 1 choose local
holomorphic coordinates z = (z;,...,z,) on a ball B := {|z| < ry} centered at p and define

u(z) := —(=loglz))* on B,

while extending u to a globally defined #-psh function on X that is bounded on X \ B. After
adding a constant, we may assume # < 0 on X.

Note that the Lelong number of u at p is zero. Since u is radial on B with a single pole at p,
by the radial formula for the residual Monge—Ampere mass [Li20, Proposition A.1], we have

(dd‘w)"({p}) = [v(u, p)]" = 0.
Put u; := max{u, —j} € PSH(X, 6) N L*(X). By Bedford-Taylor theory and Stokes’ theorem, for

any j,
fo-fr
x X

2We will introduce the notion of capacity later.
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By the BEGZ definition of the non-pluripolar Monge—Ampere measure,

6, = lim 136, .

J—)OO

f@” f@"—hm q_:fe".
jooo {u<—j) J X

Hence

21

Remark 3.13 (Logarithmic singularity fails). If u = Alog|z| near p with 4 > 0, then v(u, p) =
A and (dd‘u)*({p}) = A" > 0 by [Li20, Proposition A.1] again. Hence the above limiting

procedure loses A" units of mass at p, and fx g, = fx g —-A" < fx 0"

Lemma 3.14. Let u,v € PSH(X, 0). Then
o, = l{uZV}HZ + 1{u<v}g:l-

l’l’ldX u, V

In particular, if u < v, then

Proof. The only difficult part is to understanding the contact set {u = v}. Define

u; = max{u, Vy — j}, v; = max{v, Vg — j}
For any € > 0, we have
1
max(v,u;+¢} = l{v.i>uj+s Hmax {(vj.uj+e} + l{vj<uj+8}0:lnax{v/-,uj+a}

= 1{V_/>u_,'+8}9vj + 1{v_;<u_,-+s}ezj-

*

Since max{v;,u; + &} \, max{v;,u;} € PSH(X, 6), we have 0" - g

max{v;,u;+&} max{v;,u;}

Letting € — 0, we obtain
9}2

max{v;,u;} 2

I{Vj>uj}0\r;lj + 1{v,~Suj}9n

u;*
By multiplying both side with 1{pin(u.v)>v,-j1, We see that
Limintu)>Vo-10max(v;ae;y = Limintes)> Vo1 bmax (v
>1{vj>uj} N{min{u,v}>Vy— 1}9 + 1 {vj<uj}n{min{u,v}>Vy—j} gn
21{v>u}ﬂ{min{u,v}>V9—j}9:;1 + 1{v§u}ﬂ{min{u,v}>Vg—j}QZ-

Letting j — oo, we obtain the desired inequality.

We also have the following domination principle.

(3.8)

3.9

ase — 0.

Theorem 3.6 (Darvas-Di Nezza-Lu, [DDNLle]). Let ® € PSH(X, 6) with fx 63, > 0. Suppose

u,v € PSH(X, ) with [u] < [D], [v] <[

], and
f = o= fa
X X

If 8,({u <v}) =0, thenu > v on X.
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4. THE 6-PSH ENVELOPE

4.1. Singularity types of 6-psh functions and P-envelope. Let [0] be big, then there are
plenty of 6-psh functions (even many of them have analytic singularities!).

Define the canonical potential with minimal singularities by

V, := (sup{u € PSH(X, 6), u < 0})"

When 6 is Kéhler, we have 0 € PSH(X, 6). Hence V, = 0. Otherwise, V, < 0 is usually
regard as the “best” 6-psh function.

Proposition 4.1. Let [0] be big and let Vj be defined above, then
(1) Vy has minimal singularities, i.e. Y u € PSH(X, 0), [u] < [Vj].
(2) Vjis locally bounded on Amp([6]).
Proof. Since 6-psh is bounded from above on X, for any u € PSH(X,0), let it = u — supyu €

PSH(X,6). Then &t < 0 is a candidate of Vy, and &t < Vy. Thus, u < Vy + sup, u implies
[u] < [Vo].

For x € Amp([6]), there is ¢ € PSH(X, 6), which is smooth in U 3 x, and [¢] < [V}]. Hence,
there exists C > 0, s.t.
lﬁ <Vy+ C.

This yields Vj 1s bounded from below on U. m|

Let f : X — [—oo, +00] which is not identically +co. Define the rooftop 6-psh envelope of f
by
Py(f) := (sup{u € PSH(X,0), u < f})".? 4.1)

Clear, V, = Py(0), Po(f) € PSH(X, 6), and for any f; < f, we have Py(f;) < Py(f>). Let ¢ be
any constant, we also have Py(f + ¢) = Py(f) + c.

Proposition 4.2. If f is bounded, then [Py(f)] = [V4].

Proof. Since —c < f < ¢ for some ¢ > 0, note that,
Vo — ¢ = Py(0) — ¢ = Py(—c) < Py(f)
< Py(c) = Pg(0) + ¢ = Vg + ¢,

which completes the proof. O

Proposition 4.3 ([DDNL18a]). Let u,v € PSH(X, 6). If Py(min{u, v}) # —oo, then

Opymintun)) < Lipomintush=6y + Lipminguvn=vi0, - (4.2)

31f we replace u < fin (4.1) by u < f q.e., the obtained envelope are same.
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Proposition 4.4 ([DDNL18a]). Let u,v € PSH(X, 6). If
Op<p, O <p,
for some Borel measure u. Then

Qgg(min{u,v}) < M. (43)

Proof. By replacing u with 1x\p p, where P = {u = v = —oo}, we can assume that u(P) = 0.
Since u(X) < +oo, the function r — u({u < v + r}) is monotone increasing. Monotonic
functions have at most countable discontinuous points, and hence for almost every r > 0 we
have u({fu = v + r}) = 0. We set ¢, := Py(min{u, v + r}), and note that ¢, \, Py(minf{u, v}) as
r — 0. It then follows from Proposition 4.3 that,

0, < Vgm0 + Vgm0 < (Ligmug + Ligmvin ) 10 < 1,
where in the last inequality we used the fact that u({u = v+ r}) = 0. Letting r N\, 0, we arrive
at the conclusion. O

For any u, v € PSH(X, 6), we define the 8-psh envelope with prescribed singularities (relative

to u) by
Polu](v) := (Cl_i>r+noo P, (minfu + c, v}))* . (4.4)
Or equivalently, we have
Py[u](v) := (sup{yy € PSH(X, 0), ¢ < v, [y] < [ul})". (4.5)

In particular, set
¥ :={y e PSH(X,0), ¥ <v, [¥] < [u]},
and for ¢ € R write
E. := Py(min{u + c,v}).

Note that ¢ — min{u + ¢, v} is non-decreasing, hence ¢ +— E. is non-decreasing as well. Hence
lim., E. = sup, E. pointwisely.

For each c, by definition of the envelope, we have
E. <min{u + ¢, v},
hence E,. < vand E. < u + c. Therefore E. € ¥, and

E. <supy.
veF

Taking the limit in ¢ and then usc regularization yields

( lim Py (min{u + c, v}))* = (lmE.) < (supy) = Poluly.

Cc—+00 1//€T

Fix ¢ € ¥ and choose C € R such that < u + C. Since also ¢ < v, we have

Y <min{u + C, v}.
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So ¢ is a candidate for the envelope, and

Y < Po(min{u + C,v}) = Ec < supE..
Taking the supremum over all € ¥ and then usc regularization gives

Polulv) = (supy) < (supE) =(limE,) = ( lim P, (minfu + c, v}))*.

we.?: C—00 c—+00

Proposition 4.5. We have the following properties for Py[u](v):
(1) Polul(v) <v;
(2) Polul(v) = Polul(Py(v));
(3) If vi < vy, then Pylu](vy) < Polu](v2);
(4) If [ug] < [uz], then Pylu](v) < Poluz](v);
(5) Polu+ Al(v+ A) = Pylu](v) + A for A e R;

(6) If [v] < [u], then Py[u](v) = v;
Proof. Baby-level exercise. O

Remark 4.6. We are primarily interested in the case where v = V), namely
Pylul(Vy) = (sup{v € PSH(X,0) | v < V, <0, [v] < [u]}) . (4.6)

In this situation, we refer to it simply as the P-envelope and denote it by P[u] for convenience.
In particular, for any ¢ € R, we have

Po(min{u + ¢, Vp}) € PSH(X,60) and [Py(min{u + ¢, Vy})] = [u].

In other words, the condition [v] < [«] in (4.6) may be replaced by [v] = [u].

Since u — supy u < 0 is a candidate of the P-envelope, we have [u] < [P[u]]. Generally, the
equality does not hold.

Definition 4.7. We say u € PSH(X, ) has model type singularity if [u] = [P[u]].

4.2. Non-pluripolar MA measures for the envelope. The following result is a generalization

1

of Proposition 3.9, which will be used many times in the sequel. In particular, the mass of ¢, )

is concentrated on the contact set {Py(f) = f}.

Theorem 4.1. Let f : X — [—o0, —co] be quasi-continuous”, which is not identically +co. Then
Py(f) € PSH(X, 6) and

f Oeucr = 0 4.7
{Po(f)<f}

4Quasi-continuity will be defined in Proposition 5.3 after we introduce the notion of capacity. For now, one
may think of such a function as continuous outside sets of arbitrarily small capacity.
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Lemma 4.8. Let u,v € PSH(X, 6). Then

ity < Lipgmintuni=u 6y + Lpymintuv=v0, - (4.8)

Proof. It follows from Lemma 3.14 that,

1 pymintui=ut@pyminunyy < Lpgmintumi=us  Lpymintunt=1&pyminuny) < Lpominguvj=110, -

Thus, by Theorem 4.1, we have

71
GPy(mm {u,v}) Sl {Pg(min{u,v}=u} ggg(mm{u v}) + 1{Pg(m1n{u v} V}GPg(mln {u,v})

<Lipymintuvi=@; + L{pymin{uri=vi;

which concludes (4.8) O

The P-envelope preserves the non-pluripolar masses:

Lemma 4.9. Let 0 be big and let u € PSH(X, 6). Then

f Oy = f 9. (4.9)
X X

Plu] := (supu.)’, where u.:= Py(min{u + c,0}) € PSH(X, 6).

c>0

Proof. Set

Then (u.).-o is non-decreasing (since ¢ — min{u + ¢, 0} is non-decreasing), and by definition

Plu] = lim u, = (supu.)’.

Cc—+00 C>O

lim sup f 0, < f -
c—>+00 X X

On the other hand, by Theorem 3.4 we have the weak convergence

By Theorem 3.5 we have

b, — Op, asc— +oo,

lim g = e ..
=ty Ue X Plul

We now show that fx g, fx @, for every ¢ > 0. By construction . < min{u + ¢,0} < u +c.
Choose A > 1 so that u — A < 0. Then

hence

u—A <minfu + c, 0},
hence u — A is a candidate in the envelope and thus u — A < u.. Consequently,
u—A<u.<u+ec,

and [u] = [u.]. Applying Theorem 3.5 yields

f@’; = f@;’ forall ¢ > 0.
X X

Passing to the limit ¢ — 400 gives (4.9). m|



26 ZEHAO SHA

The MA measure of the P-envelope concentrates on the contact set:

Theorem 4.2 ( [DNT21]). Let 8 be big and let u € PSH(X, 8). Then

9;[,4] < l{p[u]:()}gn (410)

Proof. It follows from (4.8) that,
6",:[: Sl{uc=u+c}93 + l{uC:VG}Hr‘l/g

<iure<vpby + Lip=vi 0y, -

[4

We want to let ¢ — +oco. In particular, we note that the first term of the right-hand side
converges to 0° as ¢ — +oco by the dominant convergence theorem, while the left-hand side

converges to ¢, . Consequently, we have

P
Opr = Lipua=var@y, < Lipna-0/f"

where the last step comes from Proposition 3.10 (4) and Theorem 4.1. O
4.3. The ceiling operator. It is natural to ask: for a given mass 0 < M < Vol([8]), can we find
the least singular u € PSH(X, 6), with fx 0, =M?

We define the ceiling operator:

C(u) := sup {v € PSH(X,0), v<0, [u] <[v], f@’v’ = f@ﬁ}
X X

be the envelope of #-psh functions has the same (positive) mass as u but no more singular than
u. It is clearly that, C(#) € PSH(X, ), C(u) < 0 and [u] < [C(u)].
Proposition 4.10. Let u € PSH(X, 6). Then

(1) C(Cw)) = Cw);

(2) C(w) = Plul;

3) Jy O =

Proof. If we can prove P[u] = C(u), thanks to (4.9), we are done with point (3). After subtract-
ing a large constant if necessary, we may assume u < 0. In particular u, < 0 for all ¢ > 0, hence
Plu] < 0. Thus P[u] is an candidate for C(x) and we have

Plu] < C(u).

For the reverse direction, let v be a candidate of the ceiling operator, then

{Plu]<v} {Plu]l<vin{P[u]=0}

The set {u + ¢ < V) converges to the polar set of u, which has 0 mass w.r.t non-pluripolar MA measure.
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Note that we have
[Plull < [P[V]], [v] < [P[V]].

Moreover, all of these potentials have the same mass, thanks to (4.9). Then by the domination
principle (Theorem 3.6), we find

Plu] > v.
Hence, we obtain P[u] = C(u), which completes the proof of (2) and (3).

For (1), we prove P[P[u]] = P[u]. First, observe that P[P[u]] > P[u] is trivial by definition.
For the reverse inequality, denote

ﬂ:{vePSH(X,H):vSO, [u]s[v],fe';:feg}
X X

. Then we have

Plu] = sup F,, > sup Fpp,y = P[Plull,
since Fppy C Fu. O
Remark 4.11. In fact, we do not know if P[P[u]] = P[u] if u has null mass. According to the

general philosophy, the P-envelope operator is the correct object only when the non-pluripolar
mass is positive. We will only consider the positive mass in this note.

Definition 4.12 (Model potential). Let ® € PSH(X, 6). If P[®] = ® and fx 0y >0, wecall ® a
model potential.

Example 4.13. There are plenty of model potentials:
(1) The canonical potential Vy;
(2) Plu] for u € PSH(X, 8) with positive mass;

(3) ® € PSH(X, 6 with analytic singularities.

4.4. Relative Full mass classes. Let 6 be big and let @ be a model potential.

Definition 4.14. We define

E(X,0,0) = {u € PSH(X, 0) : [u] < [P], fHZ = f@g}
X X

E'(X, 6, D) := {n € &(X, 0;,D) : f|c1> —ul 0" < oo}
X
E(X,6; ®) := {u € PSH(X, 0) : [u] = [®]}.

Potentials in three classes are said to have full mass, finite energy, and minimal singularities
relative to @, respectively.
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Remark 4.15. (1) Note that
E(X,0; D) c EX(X, 0, D) c EX, 6; D),
where the first inclusion comes from (3.7) in Theorem 3.5.

(2) Since the non-pluripolar MA measure does not charge pluripolar sets, the integral

fld)—uleff
X

is well-defined, while the difference |® — u| is not defined on polar sets of u and ©.

When @ = V,, we simply write
E(X,0;Vy) = E(X,0),
&' (X,0,Vy) = E'(X,0),
E”(X,0;,Vy) = E(X, 0).

The P-envelope can be used to characterize the relative full mass classes:

Theorem 4.3. [DDNLI18a] Let u € PSH(X, 6). Then the following are equivalent:

e ue&(X,0,0);

o [®] < [u], and Pylu](D) = D.

o [®] < [u], and Plu] = P[D]
Corollary 4.16. Let u € PSH(X, 6), and let ® be a model potential. Then the following are
equivalent:

e u e &(X,0,0);

e Plu] = @.

Theorem 4.17. Let 6 be big, and let v € PSH(X, 6) be a model potential. If u € &E(X, 6; v), then
for any x € X,

’v(u, x) = v(v, x).‘

In particular,
e if > 0 is Kéhler and v = 0, Theorem 4.17 was proven in [GZ05];
e if 6 is semi-positive and big, v = 0, Theorem 4.17 was proven in [BEGZ10];
e if 6 is big and v is a model potential, Theorem 4.17 was proven in [DDNL18b].

Here we give a brief proof when 6 is big and v = V. First observe that [u] < [v], and this gives
v(u, x) > v(v, x) for any x € X. Let v = Vj, write y = v(u, x), we want to show v(Vj, x) > .
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Let U be a neighborhood of x, s.t. § = dd“p and p << 0 in U, then we have u + p < 0 is psh
in U. Then

Vo + p = Plu] + p < sup{yp € PSH(U), ¢ <0, ¢ < ylog|z| + A},
thanks to [P[u]] = [u«]. Hence,
V—-0+p<yloglzl + A,
which yields v(Vj, x) > .
Example 4.18. Let ® = V,. Fix xy € X and a local holomorphic coordinate z centered at x.
Consider the local models
Uo(z) = —(=logl)* (O <a<1), v :=logll
Then the Lelong numbers satisfy
V(Ug, x0) = 0, v(v, xo) = 1.

Consequently, for their global #-psh extensions (obtained by patching with a smooth 6-psh
potential outside a small ball), the non-pluripolar Monge—Ampere masses obey

f MAy(u,) = f MA,(V,)  (full mass), f MA,(v) < f MA,(V,) (not full mass).
X X X X

5. RELATIVE CAPACITY

5.1. The notion of capacity. Let (X, w) be a compact Kédhler manifold, and let [6] be a big
class. Suppose E C X is a Borel set, then the capacity of E is defined by:

Capy(E) := sup {f 0, ue PSH(X,0), Voy—1<u< V(;}.
u E

The capacity is a function that sends Borel subsets of X to a non-negative number. However,
the capacity is not a measure due to the lack of additivity.
Proposition 5.1. We have the following properties for the capacity:

(1) If E, C E; are both Borel, then Cap,(E,) < Capy(E»);

(2) Capy(X) = Vol([6]);

(3) For E C X Borel, [.6;, < Capy(E);

(4) ([Lu21]) Let [6,],[6.] be big, and E C X Borel. Then there exists f, g : [0, c0) — [0, o0)
continuous with f(0) = g(0) = 0, such that

Capy,(E) < f(Cap,,(E)), and  Cap,(E) < g(Cap,, (E)).

Proposition 5.2 ([BEGZ10]). Fix p > 1 and f € L?(X, w"), f > 0. Then there exists a constant
C = C(X,w,0, p) > 0 such that for all Borel sets E C X,

f fo" < Cllfllrawr Capy(EY. (.1
E
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In particular, the measure f " is dominated by the square of the #-capacity:

fw" < Cllfll» Cap;.

Proposition 5.3 (Quasi-continuous). Suppose u € PSH(X, 8), then for any € > 0, there is
U c X open with Cap,(U) < g, s.t. u is continuous in X \ U.

Proposition 5.4. Let P C X. Then P is pluripolar if and only if Cap,(P) = 0.

The notion of capacity is the right one when working with the MA measure. We need to
know that the capacity does not distinguish between “big” sets.

Let 0 be Kédhler. Assume D is a Cartier divisor such that [D] = k[0] for some k € Z.,.
Choose a smooth Hermitian metric sy on O(D) whose curvature form is positive and represents
c1(O(D)) = k[6)]. Let sp be the canonical section with div(sp) = D, and set

1
@ = legHSDHhO-

After multiplying Ay by a positive constant, we may assume ¢ < 0 on X. By the Lelong—
Poincaré formula,

dd‘log|l|splly, = [D]— k6, hence k(6 +dd‘p) = [D] > 0.

In particular, ¢ € PSH(X, 6), ¢ € C*(X \ D), and {¢ = —c0} = D.

Define ¢; := max{y, —j} € PSH(X,0) and V; :
with —1 < ¢ < 0, hence (by the bounded case)

g = | o
Jew= .

1V1 9:;] = 0,
since 6, = 0, = t[D] = 0in X \ V,. Therefore,

{¢ < —Jj}. Then ¢; € PSH(X,6) N L*(X)

Cap,(X).

Moreover, we have

Cap,0 = [0, = [ @ < capx\v) < Canm,
X X\Vy

and consequently
Cap,(X \ V1) = Capy(X).

Thus, removing a small tubular neighborhood of a divisor does not change the capacity. In
particular, the capacity does not distinguish between certain large (proper) subsets of X.

Let ® be a model potential, then the relative capacity of a Borel subset E is defined by:

Capy o(E) := sup {f @,; ue PSH(X,0), P-1<u< CD}.
E
In the case, @ = V,, the relative capacity recover the classical capacity.

The relative capacity has the same properties of the classical one. More preciously,
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(1) If E, c E, C X, then
Capy o(E1) < Capy o(Er);
(2) A subset P C X has 0 relative capacity if and only If P is pluripolar;

(3) The non-pluripolar MA mass of any E C X is dominated by the relative capacity, that
is

f@% < Capyo(E).

E

In particular, the relative capacity is also inner regular, that is:
Capy o(E) = sup{Cap, (K) : K C E, K is compact}. 5.2)

To see this, fix £ > 0, there is u € PSH(X, 0), s.t. ® — 1 < u < ® and

fgl&) > Capyo(E) — &.

E

Since @ is an inner regular Borel measure, there exists K C E compact, such that

f@ﬁ > f@Z — &2 Capyq(E) - 2e.
K E

Capy o(K) = Cap, o(E) — 2e.

Hence, we have

Taking the supremum over all compact subsets K C E, we arrive at the conclusion.
Theorem 5.1 (Comparison principle: I). Let u,v € PSH(X, 6), s.t. [v] < [P[u]]. Then

[ <] a (5.3)
{u<v} {u<v}

Proof. Step 1: Let u,v € &(X,0;®). Note that max{u,v} € &E(X,H; D), since max{u,v} €
PSH(X, 0), [max{u, v}] < [®], and

f%:fgzsfg?ndx{uv}sfgg)
X X X ’ X

Therefore, we have

which gives

[ a<[
{u<v} {u<v}

Replacing u by u + £ and letting € — 0, we arrive at (5.3) within the class &(X, 6; ©).
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Step 2: Writing ¢ = max{u, v}. We observe thatu, ¢ € &(X, 6; P[u]): Clearly, u € (X, 6; Plu)).
Since [u], [v] < [P[u]], we have [¢] < [P[u]]. Moreover,

[ir2 [ [

which implies ¢ € &(X, 6; Plu]). We then can apply comparison principle within the class

&E(X, 0; Plu]) to u and ¢,
[ o[ a=[ o
{u<v} {u<v} {u<gp}
< f o
{u<gp}
[ a
{u<v}

which arrives at (5.3). O

We also have the comparison principle within the full mass class, which is slightly different
from the previous one (see [DDNL18a, Proposition 3.5] for the proof).

Theorem 5.2 (Comparison principle: II). Let ® € PSH(X, ), and let u, v € &(X, 6; ®). Then

f g < f 0. (5.4)
{u<v} {u<v}

5.2. An oscillation estimate. In this subsection, we introduce a generalization of Kotodziej’s
oscillation estimate, due to DDL [DDNL21].

Theorem 5.3 (Kotodziej, [Ko198]). Let (X, w) be a compact Kihler manifold. Suppose u €
PSH(X, w) N L= (X) satisfies

W) = fo" (5.5
for some f € LP(X) with p > 1. Then there exists C > 0 depending on w, n, and || f]|» s.t.

oscyu < C.

We first need the following lemm, where the proof can be found in [DDNL18a, Proposition
4.30]

Lemma 5.5. Let ® be a model potential and let f € L”(X, ") for p > 1. Then for any E C X,
there exists A > 0, s.t.

f f " < ACap,4(E). (5.6)
E

Theorem 5.4 (DDL, [DDNL21]). Fix a € [0,1). Let 0 > ® € PSH(X, 6) be a model potential
and 0 < f € LP(X, ") for p > 1. Assume u € PSH(X, 6) with sup, u <0, s.t.

/1 n /1
g, < fw" + aby,
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and [®] < [P[u]]. Then there exists C > 0 depending on p, n, w, a, and || f||», s.t.
d®-C<u<0’° (5.7)

Proof. Step 1: Denote
1
g(t) = (Capy(fu < © = 1)))" .
Our goal is to prove for any s € [0, 1], we have
sg(t + 5) < bg(t)*. (5.8)

Observe that g : R,y — R, 1s decreasing, since for #, < #;, we have {u < ® -1} C {u < ® -1},
and g(+o0) = 0 since if t = co, we have

(9]

ﬂ{u<®—t}:{u:—oo}.

>0

Let s € [0, 1], taking v € PSH(X, 8) with ® — 1 < v < ®, we have

5" f o) < 5" f 0,
{u<®—r—s} {u<(1—5)D+sv—t}

since {u <@ —r1-st={u<(1-50+s(®—-1) -1} c{u<(l -5+ sv—1t}. Meanwhile,
6?1—S)<D+sv = ((1 - 5)0p + 56,)" > 56,
which gives

Sn f 9‘75 < f 9?1—S)®+SV'
{u<(1-5)D+sv—t} {u<(1—5)D+sv—t}
Note that [(1 — s)® + sv — t] = [®] < [P[u]], then by the comparison principle (5.3),

f 9?1—s)<l)+sv Sf 9:; Sf 92’
{u<(1—s5)®+sv—t} {u<(1—5)D+sv—t} {u<d-1}

where the second inequality is due to {u < (1 — )@ + sv — ¢t} C {u < ® —t}. Hence, we have

s" f 0 < f g,.
{u<®—t-s} {u<d—t}

Taking supremum among all such v, we arrive at

s"g(t+ 5)" = 5" Capyo(fu < D —1—5}) < f a,.

{u<d-1}

On the other hand, by our assumption,

f g, < f fw' +a f 0%
{u<d—t} {u<d—rt} {u<d—r1}

<ACapy,(fu <®-1})* +a f 0,

{u<d-t}

where the first last inequality is due to (??) and (5.3). Therefore,
A A
g <——~C <® -1} = —g()*™
j{;«b—t} wST1_4 ape,q)({u ) 1 ag( )",

which yields (5.8).

%In this situation, we have [u] = [®].



34 ZEHAO SHA

Step 2: We want to prove that for any t > 0 and 0 < s < 1, if g(¢) is a decreasing, right-
continuous function satisfying (5.8), with g(+oc0) = 0. Then there is T > 0 big enough, s.t.
g() =0, fort > T. The original proof can be founded in [EGZ09, Lemma 2.4].

Taking t, > 0 large enough s.t. g(#p) < 1/2b. We define a sequence {¢;} by induction in the
following way: If f(zy) = 0, we stop here, otherwise, set

ti == supft > fo 1 g(#) > g(to)/2} = sup A;.
t t

Note that #; < 1 +¢y. If not, assume #; > 1 + £, then 1 + 7, € Ay, and g(#y + 1) > g(ty)/2. Taking
s = 1 and combing with (5.8), we immediately obtain that

g(t0)/2 < g(ty + 1) < bg(ty)’,
which gives 1/2b < g(t,). But this contradicts our choice of £y, hence we must have #; < 1 + 1.

Because g is right continuous, we have g(t;) < g(t)/2. If not there is £ > 0 small enough,
s.t. g(t; + &) > g(ty)/2 thanks to right continuous. This gives ¢; < t; + € € A;, which contradicts
the definition of #. If s; = 0, we stop here. Otherwise, define

to = suplt > 171 g(t) > g(t7)/2).

We have t;,; < 1 +1¢; and g(¢;.1) < g(¢;)/2, and this sequence does not grow too fast. Taking
te (lj, tj+1), by (5.8), we have

(t —1))g(t) < bg(t;)* < 2bg(?) - g(t;).
Therefore,
ti — t; < 2bg(t;) < 2b277g(ty) <277,

Consequently, the sequence {¢;} is bounded from above with the limit

teo =ty + 2.

Step 3: We now can choose T large enough, so that

8(T) = (Capy(fu < @ - T}))% < 2_1b'
Then by Step 2, for any ¢t > T + 2, we have g(¢) = 0. Write T, = T + 3, we then obtain
Capyp({lu < ® - Tu}) =0,
which implies {# < ® — T} is pluripolar. Therefore
u>0®-T, g.e. (thus a.e.).
Thanks to u is usc, we then arrive at our conclusion. O

Remark 5.6. This result is still true if @ is not a model potential. In this case, we need to put
(??) as an assumption.
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6. RESOLUTION OF DEGENERATE MONGE-AMPERE EQUATIONS WITH PRESCRIBED SINGULARITIES

Let (X, w) be a compact Kéhler manifold and let [8] be a big class. Given a model potential
® € PSH(X, 0) (i.e. P[®] = ® < 0 and fx 65, > 0), and a Borel measure y, we study

0, = u,
u € PSH(X, 6), 6.1)
{ [u] = (@],

in two basic regimes:
(1) u = fw" with f e LP(X,0"), p > 1;

(i1) w is a non-pluripolar measure with total mass u(X) = f O -
X

6.1. Overview. Case 1: If 8§ = w is Kédhler, f > 0 is smooth, then (6.1) recovers to celebrated
Calabi conjecture, which was solved by Yau.

Theorem 6.1 ( [Yau78]). If w is Kdhler and f > 0 is smooth with fx fw' = fx w", then there
exists a unique (up to additive constant) smooth w-psh u solving

(w+ddu)" = fu'".
Case 2: If 6 = wis Kéhler, 0 < f € LP(X, w) for p > 1, then (6.1) was solved by Kotodziej.

Theorem 6.2 ( [Kot98]). If w is Kihler and f € LP(X, ") with p > L and [ fw" = [, ", then
there exists a unique bounded w-psh solution u# (normalized e.g. by sup, u = 0) of
(w+ddu)" = f".

Moreover, an a priori L™ estimate depends only on (X, w) and || f||.» (Theorem 5.3).

Case 3: If 0 > 0is big, 0 < f € LP’(X,w) for p > 1 and ® = Vj, then (6.1) was solved by
Eyssidieux-Guedj-Zeriahi.

Theorem 6.3 ( [EGZ09]). If 6 is smooth, semi-positive and big, and u = f " with f € L7,
p > 1, then
& =u

u

admits a unique bounded solution u with minimal singularities (hence [u] = [Vy]).

Case 4: If 6 is big, u is any non-pluripolar measure, and ® = V,, then (6.1) was solved by
Boucksom-Eyssidieux-Guedj-Zeriahi.

Theorem 6.4 ( [BEGZ10]). Let [6] be big and let i be a non-pluripolar measure with u(X) =
fy,- Then there exists a unique u € &(X, 0) with minimal singularities solving the non-
X

pluripolar Monge—Ampere equation

(O +ddw"y = p.
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6.2. Approximation by supersolution. We first construct the supersolutions.

Theorem 6.5. Given 0 < f € LP(X, ") s.t.

fe-

Then for any b > 1, there exists a unique v € PSH(X, 8) with [®] < [v] satisfying
0, <bf "

Proof. Fix a € (0, 1) and k positive integer. Thanks to Theorem 6.4, we can solve

noo_ n )
ka = Ckf w + al{q)ﬁve—k} Hmax{d),Vg—k}’

f%k:fer‘l/e’
X X

and ¢, € E(X, 0). In particular, integrating on both sides of (6.3) over X, we have

f9" —Ckffw +af Ormax(®.Vy—k)
(D<Vp—k)
= Ckffw +a(f max{®,Vy—k) f elrllflaXCDVe k})'
(D>Vy—k)

Note that [max{®, Vy — = [Vy], and ¢; € E(X, 6), we obtain

noo_ 71
fHVg_Ckf%_'_af%g_af gl’l’ldX(DVg k}
X X X {D>Vg—k}

_ 1
(1 “)fx% +a J ooy, Omaxiove—i

i %

N
Ji o

where ¢, 1s a constant, s.t.

which implies

Cr =
Hence, ¢, /" C(a) as k — +co, where

Cla=a+(-a)

Forafix 1 > £ > 0, define
Y = (1 — 8) max{CI), Vo — k} + &V
Obviously, ¥, € PSH(X, 0) and [y] = [Vy], so that

Oy = (1= &) B vp-n-
Then,
0, <Cla)f " +a(l-—e)"0,
Since f € L(X, ") for p > 1, it follows from Proposition 5.2,

f f w" < C Capy(E)*,
E

for every Borel subsets, where C depends on 6, n, p, || fll».

(6.2)

(6.3)

6.4)
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We claim
Cap, < £™" Capy,, - (6.5)

To see this, taking y € PSH(X, 0) with Vy—1 < y < V. Thenw = (1 —g) max{®, Vy -k} + ey €
PSH(X, 6) and satisfies ¢, — 1 < w < ;. Therefore,

g LG; < L((l — &)Omax(a,Vy—k) + 89)() < fb:afu < Capy,,, -

Taking the supremum over all such y gives our claim.

It follows from (6.4) and (6.5),

ffw" < Ce™ Cap,,, (E).
E
We then can apply Theorem 5.4 to obtain
‘kal,Dk_Cl > VQ—CQZ(D—C3.

Define
Vi,j = P(min{gy, ---,90k+j}),

then vi; > ® — C and v ; \, v as j — +oco. Moreover, v, /v as k — +oo, which implies
0 <Cla)f 0" <bf ",

as desired after choosing a s.t. C(a) < b. O

Remark 6.1. When we are working with a model potential ® # Vj, we must have

f9$<f9"’,9.
X X

Otherwise, if fx 0y = fx 9”9, then ® € &(X, ), and P[®] = Vy = ® which is a contradiction.

Theorem 6.6. Given u a non-pluripolar measure with
u(X) = f Op-
X

u < BCapy g,

If

then there exists a unique u € E(X, 6; @) with supy u = 0 solving &) = .
Proof. Theorem 5.4 + Theorem 6.5. I will fill in this when I am happy :). O

Theorem 6.7. Given u a non-pluripolar measure with

u(X) = f%-
X

Then there exists a unique u € &(X, 0; ®) with sup,u = 0 solving 6, = p. Moreover, if
u=faw" for0< felP(X " for p> 1, then [u] = [D].
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Sketch of the proof. Indeed, we have u = fv (see [DDNL18a]) for f € L'(X,v) and
v < Capyg, -
Define u; = ¢; min{f, j}v where c¢; > 1 is chosen so that u;(X) = u(X). Observe that
uj<cj-j-v<C-Capyg.
Then by Theorem 6.6, there exists a unique u; € E(X, 6; @), s.t.
0. = Hj-

Consequently, we can extract a subsequence and we still denote it by {u;} C &E(X,0; D), s.t.
u; — u € PSH(X, 6) in L', u € &X,0;®)and u < ® < 0. Then, by the below Lemma 6.2, we

have
g, > pu.

u

On the other hand, it follows from Theorem 3.5,

u(X)=f9$2f92 > pu(X).
X X

Hence, we have ¢ = u. The fact [u] = [@] can be obtained by Theorem 5.4. O

Lemma 6.2. Let {u j}j C PSH(X,6) such that 6, > f; u, where f; € L'(X,p) and p is a
positive non-pluripolar Borel measure on X. Assume that f; — f € L'(X, ) in L'(X,p), and
u; — u € PSH(X, 6) in L' (X, w"). Then

& > fu

6.3. The Aubin-Yau equation. Let (X, w) be a compact Kihler manifold and let 6 be a big
class. Fix ® € PSH(X, 0) a model potential, and u a non-pluripolar measure, we consider the

following equation:
6 =e"u. (6.6)

u

We recall

Theorem 6.8 (Schauder fixed-point theorem). Let X be a Banach space, and let K ¢ X be a
non-empty, compact and convex set. Then given any continuous mapping F' : K — K there
exists x € K such that F(x) = x.

We also need the following tool:

Lemma 6.3. Assume u is a non-pluripolar measure on X. Let u;,u € PSH(X, Aw) for some
A > 0. Assume u; — u in L' (X, w") and sup; fx |uj|2 du < +o0. Then

f|uj—u| du — 0.
X
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Proof. 1t follows from [GZ17, Lemma 11.5] that

f (u; - u) du— 0. (6.7)
X

For each j > 0 we set it; := (supk2 i uk)*. Then it; € PSH(X, 6) and i; decrease to u pointwise.

Since ii; > max {uj, u}, we can have
|uj— u| = 2max{uj,u} —uj—u< 2(uj—u) + (u—uj).

It thus follows from the monotone convergence theorem and (6.7) that

Jh=dauw=2 [ (- w)aa+ [ (u=)du—o.

Theorem 6.9. Given y a non-pluripolar measure of finite mass. Then there exists a unique
u € &(X,0; ®) that solves (6.6). Moreover, if u = f " with f € LP(X, ") for p > 1, then
[u] = [D].
Proof. Consider
K = {u € PSH(X, 0), [u] < [®], fu W= ()}.
X
In fact, K is convex and compact in L'(X, w"). Define
F:K— K, P uecé&X,0,0),

satisfying
0, = C(p) eu;

fxuw”:O,

[a=-co [ea-[a
X X X

Thanks to Theorem 6.7, u is unique, so that F' is well-defined. We now show F is continuous

where C(y) is chosen s.t.

in L'-topology. Let ¢y — ¢ in L'(X, w"), and denote F(¢;) := uy. Since K is compact, after
extracting a subsequence, we assume u; — u in L'(X, w"). The goal is to prove that
6, = C(p) e“u.

From the normalization, we obtain a uniform bound for sup, ¢, and thus a uniform for e**. It
follows from [GZ17, Lemma 11.5] that

fe“’k d,u—>fe‘”d,u.
X X

0! 0!

fx ® _, Jx70 :
fx etrdu fx evdu
Hence C(¢y)e?* — C(p)e? in L'(X, u). By Lemma 6.2, we obtain

Then,

Clew) =

= C().

0. = C(p) e’pu.
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Since [u#] < [®], thanks to Theorem 3.5, we have

c@ [ en= [ o> [a=co [ e
X X X X

which forces 6, = C(¢) e“u. Consequently, F is continuous in L'-topology.

Applying Schauder fixed-point theorem, there exists ¢ s.t. F(¢) = ¢. Then we have

6, = C(p)e‘p
fx pw"=0.

Taking @ = ¢ + log C(¢), we arrive at our solution @ € &(X, 6; ®@). This gives the existence of
(6.6).

For the uniqueness, let u, v € &(X, 8; ®) be two solutions. Assume {v < u} # @, then

f = f .
{v<u} {v<u)

< 0, (by Theorem 5.2)

{v<u}

= f e'du
{v<u}

< f e"du,
{v<u}

which implies u({v < u}). Note that, u = 767, so that 8]({v < u}). Applying domination
principle (Theorem 3.6), we have v > u on X and {v < u} = 0. Conversely, we also have

{u < v} =0, and therefore u = v on X. O

6.4. Singular KE metrics with prescribed singularities. Solutions of complex Monge-Ampere
equations are linked to existence of canonical Kédhler metrics. In particular, we can think of the
solution to
g, = el "

as a potential with prescribed singularity type and prescribed Ricci curvature in the philoso-
phy of the Calabi-Yau theorem. As an immediate application of the resolution of the Monge-
Ampere equation

o = &t
with prescribed singularities [u] = [®], we obtain existence of singular KE metrics with pre-
scribed singularity type on Kéhler manifolds of general type.

Corollary 6.4. Let X be a smooth projective manifold with ample canonical bundle Kx and let
h be a smooth Hermitian metric on Ky with 6 := ®(h) > 0. Suppose also that ® € PSH(X, 6) is
a model potential, has small unbounded locus. Then there exists a unique singular KE metric
he™ on Kx with u € PSH(X, 6) and [u] = [D].

Remark 6.5. An analogous result also holds on Calabi-Yau manifolds.
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We want to underline that the assumption of the model potential is necessary.

Theorem 6.10. Let ¢ € PSH(X, 6) with positive mass. Suppose for any 0 < f € L*(X), there
exists u that satisfying

0 = fu"

u

and [u] = [¢]. Then ¢ has model type singularity, i.e. [P[¢]] = [¢].

Proof. Assume [¢] # [P[¢]], and [¢] < [P[¢]] strictly, then the inclusion
&(X, 0, ¢) C &(X, 0; P[p])

holds also strictly. Note that [u] = [Plu]], and

f = &= [ o
X X

O = Lipto1=00" = f o,

where f € L*(X) that satisfying f = 0 on X \ {P[¢] = O} and f = 6"/w" on {P[¢] = O}.

Therefore, P[¢] is the unique solution solves 9;[ o = fw" in the class E(X, 0; P[¢]). Since

Pl¢] ¢ E(X, 6; ¢), there is no solution u € &E(X, 6; ¢) that solving 6, = fw" s.t. [u] = [¢]. O

Therefore,

Remark 6.6. The above result is still true if we replace f € L*(X) by f € L?(X,w") for p > 1.

6.5. Log concavity of volume. In this subsection, we introduce the log concavity of MA mea-
sure, which is a direct consequence of the solvability of complex Monge-Ampere equations
with prescribed singularity type:

Theorem 6.11. Let 74, ..., T, be closed positive (1, 1)-currents. Then

leA...ATnz(ny)"...(fT;)”, (6.8)
X X X

r=(fr)

is concave on the sets of positive currents.

In particular, the map

Proof. Assume fxw” = Jy TJ’.’ =1, for 1 < j < n. Assume all T; are big, otherwise there is
nothing need to prove.

Consider a smooth closed (1, 1) form 6; cohomologeous to T';, s.t. T; = 0; + dd“u; for some
u; € PSH(X,6;). Then we know Py [u;] is a model potential. It follows from Theorem 6.7,
there exists ¢; € E(X, 0; Py [u;]) s.t.

(01 + ddL(,D])n =w".
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Hence,
le A---ANT, = f(el +dd‘)N--- N0, +dd°p,) > fa)” =1,
X X X
thanks to [BEGZ10, Proposition 1.11], and we are done. O

Remark 6.7. The log concavity of volume was first proven by Boucksom—Favre—Jonsson
[BFJO9] when the class is big and nef. After, Boucksom-Eyssidieux-Guedj-Zeriahi [BEGZ10]
showed the case when the current has analytic singularities. The full version was affirmatively
proven by Darvase-Di Nezza-Lu [DDNL21].

7. UnirorM C° ESTIMATE FOR cSCK EQUATIONS

In this section, we introduce a uniform C° estimate for cscK equations given by Deruelle-Di
Nezza [DDN22].’

7.1. Overview. The constant scalar curvature Kéhler (often abbreviated as cscK) metric gen-
eralizes the concept of the Kihler—Einstein metric. And on compact Kihler manifolds, the
average of the scalar curvature R is given by
2nme (M) U [w]™!

[w]"

R=
which is independent of the choice of w.

For a polarized manifold (M, L), the Yau-Tian-Donaldson conjecture states that the existence
of the cscK metric in ¢;(L) is equivalent to K-stability of (M, L), linking the K-energy’s analytic
behavior to algebraic stability via test configurations [ Yau93, Tia97, Don02].

In [Chel8], Chen outlined a program for studying the existence problem for cscK metric:
a new continuity path that links the cscK equation to a certain second-order elliptic equa-
tion, apparently motivated by the classical continuity path for Kéhler Einstein metrics and
Donaldson’s continuity path for conical Kéhler Einstein metrics, and showed the openness.
Further, Chen and Cheng [CC21b, CC21a] established a priori estimates and proved the ex-
istence of the cscK metric under the propness of the K-energy. There has many significant
progress made in the resolution of the YTD conjecture; we refer interested readers to see, for
instance [Sto09], [BDL20], [BBJ21], [BHI19,BHIJ22], etc.

Fix w, consider w, = w + ddp. Set

then applying dd‘ log to this equality gives
Ric(w,) = Ric(w) — dd log —.
wn
Tracing both sides w.r.t w, leads to
R = R(w,) = tr, Ric(w) — A,F.

T will also add the C? estimate after.
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Therefore, the cscK equation can be written as a system of coupled equations:
— eF wn;

4 R (7.1)
AF = tryRic(w) - R.

W,

The (classical) idea is then to deform the above system using a continuity path in such a way
that the initial system (at time # = 0) has an obvious solution while the system of equations at
t = 1 is the one for which we want to prove existence of solutions. The goal is to show that the
set S of parameters ¢ € [0, 1] such that a smooth solution exists is open, closed and non-empty.
This would imply in turn that # = 1 is in S, meaning that the desired solution exists.

The closedness part is historically the most difficult. In the framework of the continu-
ity method (specific to this setting) it suffices to prove uniform estimates for cscK poten-
tials. Indeed, such estimates generalize easily to potentials which are solutions of the inter-
mediate equations we have to deal with in the continuity method. The key result that Chen-
Cheng [CC21b] are able to obtain states as follows:

Theorem 7.1. Let (X, w) be a compact Kihler manifold. Assume w,, is a cscK metric for
some smooth function ¢ on X normalized such that supy ¢ = 0. Then all the derivatives of
¢ can be estimated in terms of Ent(yp), i.e. for each k > 0, there exists a positive constant
Ci = C(k,Ent(¢)) such that

lleller < Ci

Here Ent(p) denotes the entropy of the measure wy, and it is defined as

(J)Z n F n
Ent(¢) = | log — w, = | Fe'o".
x o X

Our goal is to get a priori estimate within the realm of pluripotential theory.

7.2. A priori C° estimate. We normalized V = Vol,(X) = 1. Let ¢ and F be the solution of
(7.1). Let u be the solution of

W'=bTle" VF2+ 10", with supu=0, (7.2)

X

where b 1s set so that fx ) = 1. Thanks to Yau’s theorem 6.1, the existence of u is guaranteed.
Note that

O<b:feFVF2+1w"
X
:f eFVF2+lw”+f FVF2 +1 "
(F<1} {

F>1}

< V2 e+ V2Ent(p) < +o,
if Ent(¢p) is bounded.

Theorem 7.2. Given € € (0, 1), there exists C = C(g, w, b), s.t.

F+eu—-Ap <C,
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where A > 0 depends only on the lower bound of Ric(w).

Proof. Suppose Ric(w) > —Kw, we take A = K + 1 and define
v:i=F+¢eu—Agp.
We calculate that

Agv = A F + eAgu — AAyp

wy, N W

:tr¢RiC(w)—I§+n8 9D—(c:trwa)+Atr¢,cu—An

'
Wy A Wy,

> —(IA€+An)+(A—K—<p)tr¢w+ns
w"
©

> —(R + An) + neb™#(F* + 1),
where the last inequality is given by Theorem 3.3. By the maximum principle, at the maximum
point p of v, we have
msb_%(F2 + l)ﬁ(p) <R+ An,
which implie F(p) < C(e, K, b).

Leta,o € (0, 1), we have either

b
or F<VF24+1< —

F2+1> < )
ad’

~aot’

Hence, we have

n F n F n F n
= <
w, =€ "< 1[ ﬁF%lz#}e W +1{ F2+lsa§n}e w

n

a6 b
, VF2 + 10" + e o)

_b_
=ad"w, + e« W"

<

< awf, + e ",
Applying Theorem 5.4, we then obtain
¢ = ou— Cy.
Taking 6 small enough so that Aé = &, consequently, we have
F+eu—-Ap=v<v(p) <C(egb,w),
which complete the proof. O
Remark 7.1. We verify the assumption in Theorem 5.4 here. Setting 0 = w > 0, u = ¢, ® = du

and f = e € LP (X, w") for p > 1. Note that du is a candidate of P[¢] = 0, then [6u] < [P[¢]].
Consider v € PSH(X, w), s.t. ou —1 < v < éu. Define y = v —du, then we have —1 < y <0, and

Cap,,su = Capy,, -
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Let g = fw"/w}, € LP(X) for p > 1, it follows from Lemma 5.5,

f fo' = f g &y < ACap,, (E)’ = ACap,u(EY,
E

E
for any Borel subsets E, which completes the verification.

Corollary 7.2. The functions ¢, F, u are uniformly bounded by contant only depends on w and
Ent(yp).

Proof. Thanks to Theorem 7.2 and supy ¢ = 0, we now have

F <C - &u.

feQFwn < Cfe—quwn
X X

Choosing € < v([w]), then by Skoda’s integrability (Theorem 2.4), we obtain a uniform upper

Thus,

bound for ||ef||;2. Applying Kotodziej’s estimate (Theorem 5.3) to W, = el w", we have
@ > —C(lle" 12, w),
which give a uniform control on ||¢||z~.

Repeating this trick again,

fezF (F2 + 1) W' < fe”w" < Cfe_4g”w”.
X X X

We choose & < (2v([w]))~! this time, then by Skoda’s integrability, we obtain a uniform upper
bound for |l VF2 + 1||;2. Combing with Kotodziej’s estimate, we have a control on ||ul|;~ with
the constant depending on |lef VF2 + 1|2 and w.

By the uniform bounds for ||¢|[;~ and ||u||.~, together with Theorem 7.2, we obtain an upper
bound for F.

It remains to prove the lower bound for F. To finish this, assume first Ric(w) < Bw. Taking
s = B+ 1, then

Ay (F + s¢) :—I?+tr¢Ric(w)+ sn — stry, w

<sn—R-tr,w

A

_F
<sn—R—ne ~,

where the last inequality comes from the arithmetic—geometric mean inequality. Let p be the
minimum point of F' + sp, we than have

N _Ep
sn—R—ne"n >0,

or equivalently
F(p) > -C.

Therefore,
F +sp > F(p) - sllell.~ = -C,
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which gives the desired estimate.

To be continue...
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