
PLURIPOTENTIAL THEORY ON KÄHLER MANIFOLDS

ZEHAO SHA

Abstract. This document is a self-study note on pluripotential theory. For more details, we refer
interested readers to [GZ17], [DDNL23], and [Xia25] for details. It is assumed that the reader
has a foundational understanding of Kähler geometry and function theory of several complex
variables. Any corrections or suggestions are warmly welcomed.
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1. Canonical metrics and complexMonge-Ampère equation

Let (X, ω) be an n-dimensional compact Kähler manifold. Here X is an n-dimensional com-
pact complex manifold, and ω is a positive closed real (1, 1)-form, which is called the Kähler
form. Let (z1, ..., zn) be a local coordinate, then

ω =
√
−1gi j̄dzi ∧ dz̄ j,

where
(
gi j̄

)
is a Hermitian matrix.

Example 1.1. (1) The complex projective space (CP⋉, ωFS ) endowed with the Fubini-Study
metric is a Kähler manifold, where on each Uk = {zk , 0}

ωFS =
√
−1∂∂̄ log(1 + |z|2).

(2) Any hypersurfaces Vn = {F = 0} ⊂ CPn+1 where F is a homogeneous polynomial of degree
d is a Kähler manifold with respect to ωFS |V .
(3) The Euclidean form

ω0 =
∑

k

√
−1dzk ∧ dz̄k

is closed and invariant under translations. This induces Kähler forms on complex tori X =
Cn/Λ, where Λ ⊂ R2n is a lattice.

Given a Kähler form ω, we can define the associated volume form ωn. Let dVg be the
Riemannian volume form, then we have

dVg =
ωn

n!
.

The normal coordinate on Kähler manifold will be useful in our calculation.
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Proposition 1.2 (Kähler normal coordinates). If ω is a Kähler metric, then for each point p and
an open neighbourhood U of p we can choose a local coordinate such that for any i, j, k

gi j̄(p) = δi j and ∂igk j̄ = ∂īgk j̄ = 0, (1.1)

where δi j is the Kronecker symbol.

The Ricci curvature of ω can be defined by

Ric(ω) =
√
−1∂∂̄ log det(ω).

Note that the Ricci curvature is a closed real (1, 1)-form. And, the scalar curvature R(ω) :=
trω Ric(ω) is the trace of the Ricci curvature.

Proposition 1.3 (∂∂̄-Lemma). Let (X, ω) be a compact Kähler manifold. Suppose α and β are
two closed real (1, 1)-forms that are cohomologous to each other. Then there exists a smooth
function u on X such that

α − β =
√
−1∂∂̄u.

Fixed a Kähler class [ω], thanks to ∂∂̄-Lemma, the space of Kähler metrics in [ω] can be
formulated by

Hω := {φ ∈ C∞(X), ωφ = ω +
√
−1∂∂̄φ > 0}.

Question 1.4. Can we find the “best” metric ωφ in [ω]?

In fact, we expect to find metrics with special curvature properties in [ω], which often arise
as solutions to geometric PDE or critical points of energy functionals. There are some nice
candidates:

Definition 1.5 (Kähler-Einstein metric). A Kähler metric ω is called Kähler-Einstein (KE for
short) if there is λ ∈ R, so that

Ric(ω) = λω.

Definition 1.6 (CscK metric). A Kähler metric ω is called cscK if ω has constant scalar curva-
ture.

Definition 1.7 (Extremal metric). A Kähler metric ω is called extremal if ∇1,0R is holomorphic.

Clearly,

{KE metrics} ⊂ {CscK metrics} ⊂ {Extremal metrics},

so the KE metric is the optimal choice for our Question 1.4.

Observe that if we have two Kähler metrics ω and θ, then

Ric(ω) − Ric(θ) =
√
−1∂∂̄ log

(
det(θ)
det(ω)

)
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where the right-hand side is a globally defined exact (1, 1)-form.

Definition 1.8 (The first Chern class). The first Chern class c1(X) of X is defined by

c1(X) =
1

2π
[Ric(ω)] ∈ H1,1(X,R).

Once we have a KE metric ω with Ric(ω) = λω, by taking cohomology class on each sides,

c1(X) =
λ

2π
[ω].

Since [ω] > 0 is a Kähler class, the existence of a KE metric necessitates a definite sign of
c1(X).

Example 1.9. Let X = CP1
×S , where S is a compact Riemann surface of genus 2. Then c1(X)

does not have a definite sign.

Proposition 1.10. Let X be an n-dimensional compact Kähler manifold and λω ∈ 2πc1(X) for
some λ ∈ R. Denote by ωφ := ω +

√
−1∂∂̄φ. Then the following statements are equivalent:

(1) ωφ is a Kähler-Einstein metric;

(2) ωφ is a Kähler metric with constant scalar curvature;

(3) φ solves (
ω +
√
−1∂∂̄φ

)n
= e−λφ+hωn (MAλ)

for some smooth h : X → R such that Ric(ω) = λω +
√
−1∂∂̄h.

Proof. (2)⇐⇒ (1): If ωφ is cscK and λωφ ∈ 2πc1(X), then there is f ∈ C∞(X) such that

Ric(ωφ) = λωφ +
√
−1∂∂̄ f .

Taking trace w.r.t ωφ gives ∆φ f = 0. This concludes f ≡ constant and ωφ is KE, since there
are no non-constant harmonic functions on compact manifolds.

(3)⇐⇒ (1): Assume ωφ is KE. Since λωφ ∈ 2πc1(X), there is h ∈ C∞(X) such that Ric(ω) =
λω +

√
−1∂∂̄h, and

Ric(ωφ) = λωφ = Ric(ω) −
√
−1∂∂̄h +

√
−1∂∂̄λφ.

This implies
√
−1∂∂̄

(
ωn
φ

ωn

)
=
√
−1∂∂̄

(
e−λφ+h

)
,

as desired. Conversely, we take
√
−1∂∂̄ to both sides of (MAλ) which yields ωφ is KE. □

The solvability of (MAλ) is well-known: :

(1) If c1(X) < 0, X is of general type, a problem solved by Aubin [Aub76] and Yau [Yau78];

(2) If c1(X) = 0, X is Calabi-Yau, as solved by Yau [Yau78];
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(3) If c1(X) > 0, X is Fano, there are some obstructions for the existence of KE metrics,
introduced by Matsushima [Mat57], Futaki [Fut83], and Tian [Tia97]. It was proven by
Chen-Donaldson-Sun [CDS15a, CDS15b, CDS15c] that the K-polystability of a Fano
manifold is equivalent to the existence of a KE metric.

Question 1.11. What about the “singular” case? Can we solve (MAλ)?

In practice, “singular” may refer to three different sources:

(i) the underlying space X is singular (a Kähler variety: Xreg carries a Kähler form);

(ii) the background class is only semi-positive / big, so the representative ω may be degen-
erate (not Kähler);

(iii) the potential φ is not smooth (e.g. merely psh, hence in L1).

All three viewpoints lead to the same weak complex Monge-Ampère problem once we for-
mulate it in the non-pluripolar sense. We provide a brief explanation here, with a more detailed
discussion to follow in a later section.

Fix a closed semi-positive (1, 1)-form (or current) θ on X and consider

⟨(θ + ddcφ)n⟩ = e−λ φ+ f µ, (SMA)

where φ ∈ PSH(X, θ), λ ∈ R, f ∈ Lp is given, and µ is a fixed positive measure. Here ⟨·⟩ denotes
the non-pluripolar Monge–Ampère product, which puts no mass on pluripolar subsets.

From (i) to (ii)+ (iii) via resolution. Let Y be a Kähler variety and let π : X → Y be a
resolution. A Kähler form ωY on Yreg pulls back to a closed semi-positive form π∗ωY on X that
is degenerate along the exceptional directions. Choosing a smooth representative

θ ∈ π∗[ωY] ⊂ H1,1(X,R),

the equation on Y is equivalent to (SMA) on X with a right-hand side measure

µ = π∗(ωn
Y) · e f◦π · (divisorial density coming from the Jacobian),

and the unknown potential replaced by φ ◦ π. Equivalence follows from functoriality of the
non-pluripolar product and the fact that it charges no mass on analytic sets (hence nothing is
lost on Ysing).

Moving singularities between the background current and the potential function. Within
a fixed cohomology class, we can always take θ smooth. Indeed, if θ is a closed positive current
and θ0 is a smooth form with [θ0] = [θ], then

θ0 = θ + ddcψ for some (quasi-psh) ψ,

and setting φ̃ := φ − ψ gives
θ0 + ddcφ̃ = θ + ddcφ,
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so (SMA) is unchanged while the singularity has been moved from the background current to
the potential. Thus case (ii) and (iii) are just two faces of the same weak MA equation in a fixed
cohomology class.

In summary, whether the singularity sits in the space, the background form, or the potential,
the appropriate notion of solution to (SMA) is the same: a θ-psh potential φ solving (SMA) in
the non-pluripolar sense, typically sought in the finite energy class E1(X, θ).

2. Quasi-plurisubharmonic functions

2.1. Basic definition. Let (X, ω) be a compact Kähler manifold. We abbreviate the adjective
“plurisubharmonic” as “psh”. From now on, we will use the convention

dc :=

√
−1

2π
(∂ − ∂), ddc =

√
−1
π

∂∂,

so that ddc maps real-valued functions to real (1, 1)-forms/currents.

Definition 2.1. Let θ be a closed real (1, 1)-form.

• We say a function u : X → R∪ {−∞} is quasi-psh if u can be locally written as the sum
of a smooth function and a psh function.

• We say a function u : X → R∪ {−∞} is θ-psh if u is quasi-psh and θu = θ + ddcu ≥ 0 in
the sense of current. We denote PSH(X, θ) by the space of all θ-psh functions on X.

Example 2.2. Consider θ ≥ 0, there are plenty of examples of θ-psh functions:

• If θ = ω is Kähler and u ∈ C2(X), then there exists A >> 1 so that

Aω + ddcu ≥ 0,

which gives u/A ∈ PSH(X, ω).

• Let X = Pn and let θ = ωFS . If P is a homogeneous polynomial of degree d in z ∈ Cn+1,
then

φ(z) =
1
d

log |P|(z) − log |z| ∈ PSH (Pn, ωFS ) .

More generally if L → X is a positive holomorphic line bundle with metric h = e−ϕ of
curvature ω = Θh = ddcϕ > 0 and if s ∈ H0(X, L), then

φ(z) = log |s|h = log |s| − ϕ0 ∈ PSH(X, ω).

• Let B ⊂ Cn be a ball centered at the origin. Functions log |z|, −(− log |z|)α for 0 < α < 1
and − log(− log |z|) on B are all θ-psh functions.
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Proposition 2.3. Assume X = Pn = Cn ∪ {z0 = 0} endowed with ω = ωFS . Consider

L(Cn) := {u ∈ PSH(Cn), u(z) ≤
1
2

log
(
1 + |z|2

)
+C for all z ∈ Cn}.

Then there is a one to one correspondence

u ∈ L(Cn) 7→ u −
1
2

log
(
1 + |z′|2

)
∈ PSH(Pn, ω).

Proof. Work on the affine chart U0 = {Z0 , 0} ≃ Cn with coordinates z j = Z j/Z0, and set
H∞ := Pn \ U0 = {Z0 = 0}. Let

ϕ0(z) := 1
2 log

(
1 + |z|2

)
, ωFS = ddcϕ0 on U0.

Given u ∈ L(Cn), define on U0

φ0 := u − ϕ0.

Since u is psh, ddcφ0 + ωFS = ddcu ≥ 0 on U0, so φ0 is ωFS -psh there. The growth u ≤ ϕ0 +C
implies a uniform upper bound φ0 ≤ C even near H∞, hence the usc extension

φ :=
(
φ0

)∗ on Pn

is well defined and φ is ωFS -psh. This yields the map u 7→ φ ∈ PSH(Pn, ωFS ).

Conversely, let φ ∈ PSH(Pn, ωFS ). So, φ ≤ C on Pn. On U0, define

u := φ + ϕ0.

Then ddcu = ddcφ+ddcϕ0 ≥ −ωFS +ωFS = 0, so u is psh on Cn, and u ≤ ϕ0+C, i.e. u ∈ L(Cn).

On any other affine chart U j one uses the local FS potential ϕ j with ddcϕ j = ωFS ; on overlaps
ϕ0 − ϕ j is pluriharmonic, so the above constructions glue. Finally, starting from u gives φ with
φ|U0 = u − ϕ0, hence (φ + ϕ0)|U0 = u; starting from φ gives u = φ + ϕ0 and then (u − ϕ0)∗ = φ.
Thus the correspondence is bijective. □

Remark 2.4. Equivalently, the growth condition definingL(Cn) can be phrased as: the “Lelong
number at infinity” of u (with respect to the weight ϕ0) is at most 1/2. This is precisely the
condition ensuring that u − ϕ0 does not blow up to +∞ along the hyperplane at infinity H∞, so
it extends as an ωFS-psh function on Pn.

Definition 2.5. A subset P ⊂ X is pluripolar if for any x ∈ X, there is an open neighborhood U
of x and a function ψ ∈ PSH(U) such that

ψ|P∩U ≡ −∞.

We say some property about objects on X holds quasi-everywhere (q.e.) if it holds outside a
pluripolar set.

Theorem 2.1 (Josefson’s theorem). Assume that X is a compact complex manifold and P ⊂ X
is a pluripolar set. Then there is a quasi-psh function ψ on X with ψ|P ≡ −∞.
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We also have:

Proposition 2.6. Let u, v ∈ PSH(X, θ). Assume that there is a dense subset E ⊆ X such that

u ≤ v on E,

then u ≤ v on X.

2.2. Lelong numbers. Singularities of quasi-psh functions are at worst logarithmic thanks
to the Lelong-Jensen formula and sub-mean value property. An intuitive picture is that psh
functions are subharmonic when restricted to each complex line, and the subharmonic functions
have only logarithmic level singularities in real dimension 2. We can then use the Lelong
number to measure how “singular” a quasi-psh function is, at each point:

Definition 2.7 (Lelong number). Let X be a compact complex manifold and let θ be a closed
real (1, 1)-form.

(1) The Lelong number of u ∈ PSH(X, θ) at p ∈ X is defined by

ν(u, p) = sup
{
γ ≥ 0; u(z) ≤ γ log(d(z, p)) + O(1)

}
.

(2) Let T be a positive closed (1, 1)-current such that [T ] = [θ]. The Lelong number of T
at p ∈ X is defined by

ν(T, p) := ν(u, p),

where u is θ-psh s.t. T = θ + ddcu.

Remark 2.8. Equivalently, in local coordinates z centered at p,

ν(T, p) = lim
r↓0

∫
{d(z,p)<r}

T ∧ (ddc log(d(z, p)))n−1.

Some nice properties for Lelong numbers, thanks to Siu, are:

Theorem 2.2 (Siu, [Siu74]). Let X be a compact complex manifold, and let u be quasi-psh.
Then

• the function x 7−→ ν(u, x) is usc and invariant under local biholomorphism;

• sets Ec(u) = {x ∈ X, ν(u, x) ≥ c} are analytic for each c > 0.

Theorem 2.3 (Siu’s decomposition, [Siu74]). Let X be a complex manifold and T a positive
closed (1, 1)-current on X. Then there exist nonnegative numbers λi (locally only finitely many
nonzero), irreducible divisors Di ⊂ X, and a positive closed (1, 1)-current R such that

T =
∑

i

λi [Di] + R,
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where [Di] denotes integration along Di, and R has zero generic Lelong number along every
divisor (equivalently, R has no divisorial component). Moreover, for each i,

λi = ν(T, x) for a generic point x ∈ Di.

Corollary 2.9. Let X be a complex manifold with dim X ≥ 2, let x ∈ X, and let π : X̃ =
Blx X → X be the blow-up at x with exceptional divisor E = π−1(x). For any positive closed
(1, 1)-current T on X,

ν(T, x) = sup
{
γ ≥ 0; π∗T − γ [E] is a positive closed (1, 1)-current on X̃

}
.

Proposition 2.10 (Properties of Lelong numbers). Let u, v ∈ PSH(X, θ), λ > 0 and x ∈ X. Then

(1) ν(λu, x) = λν(u, x);

(2) ν(u + v, x) = ν(u, x) + ν(u, x);

(3) ν(max{u, v}, x) = min{ν(u, x), ν(v, x)}.

Definition 2.11 (Lelong number of a class). The Lelong number of a class [θ] is defined by

ν([θ]) := sup{ν(u, x); x ∈ X and u ∈ PSH(X, θ)} < +∞,

which only depends on the cohomology class [θ].

2.3. Skoda’s integrability. It is clearly that PSH(X, θ) ⊂ L1(X). Moreover, u ∈ Lp(X) w.r.t.
any smooth volume form. This fact can be shown by Skoda’s integrability.1

Theorem 2.4 (Skoda, [Sko72]). Let X be a compact complex manifold, and let θ be a closed
(1, 1)-form. Assume φ ∈ PSH(X, θ) and A < 2

[
supx∈X ν(φ, x)

]−1. Then exp(−Aφ) ∈ L1(X).
Moreover, if A < 2ν([θ])−1, then

sup
{∫

X
e−AφdV | φ ∈ PSH(X, θ) and sup

X
φ = 0

}
< +∞. (2.1)

We then decompose u = u+ − u−, since u is bounded from above, we only need to verify that
u− ∈ Lp(X). Indeed, ∫

X
|u−|p dV ≤ Cp,δ

∫
X
(1 + eδ(u

−)) dV

≤ Cp,δVol(X) +Cp,δ

∫
X

e−δu · eδ(u
+) dV

< +∞,

for some δ < 2
[
supx∈X ν(φ, x)

]−1, thanks to Skoda’s integrability and boundness of u+.

1We are cheating here, because the exponential integrability (Skoda’s integrability) is stronger than polynomial
integrability (Lp property). In fact, the Lp property is a direct consequence of the sub-mean value property for psh
functions.
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2.4. Hartogs lemma and Montel property. We also have the following Hartogs lemma and
Montel property for θ-psh functions.

Theorem 2.12 (Hartogs lemma). Let X be a compact complex manifold and let θ be a smooth
closed (1, 1)-form on X. Suppose (u j) j≥1 ⊂ PSH(X, θ) satisfies supX u j ≤ C for some C ∈ R and
all j. Set

u :=
(

lim sup
j→∞

u j
)∗
,

the usc regularization of the pointwise lim sup. Then either u ≡ −∞, or else

(i) u ∈ PSH(X, θ),

(ii) there is a subsequence u jk → u in L1(X, dV) with respect to any smooth volume form dV .

Corollary 2.13 (Montel property). Let X and θ be as in Theorem 2.12. For all A ≥ 0, the sets

PSHA(X, θ) :=
{

u ∈ PSH(X, θ, −A ≤ sup
X

u ≤ 0
}

are compact in L1-topology.

Proposition 2.14. We have the following properties for θ-psh functions:

(1) If
(
u j

)
j
⊂ PSH(X, θ) and u j ↘ u . −∞, then u ∈ PSH(X, θ).

(2) If
(
u j

)
j
⊂ PSH(X, θ) is uniformly bounded from above and u j ↗ u, then u∗ ∈ PSH(X, θ)

and u = u∗ almost everywhere. Here

u∗(z) = lim sup
w→z

u(w) = inf
r>0

sup
Br(z)

u

is the usc regularization.

(3) Let (uα)α∈A ⊂ PSH(X, θ) be uniformly bounded from above, then

U :=
(
sup
α∈A

uα

)∗
∈ PSH(X, θ).

(4) If φ, ψ ∈ PSH(X, θ), then log
(
eφ + eψ

)
,max{φ, ψ} ∈ PSH(X, θ).

(5) If φ ∈ PSH(X, θ), χ ∈ C2(X) such that χ′′ ≥ 0 and 0 ≤ χ′ ≤ 1, then χ ◦ φ ∈ PSH(X, θ).

Proof. See Demailly’s book [Dem12]. □

Remark 2.15 (Choquet’s lemma). In (3), the index set A can be arbitrary. Moreover, there
exists a countable subfamily (u j) with u j ∈ {uα : α ∈ A} such that(

sup
α∈A

uα

)∗
=

(
sup
j≥1

u j

)∗
.
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2.5. Demailly’s regularization. A cohomology class α ∈ H1,1(X,R) is called Kähler if there
is a Kähler form ω ∈ α. Besides,

Definition 2.16. Let (X, ω) be a compact Kähler manifold and let α ∈ H1,1(X,R) be a real
(1, 1)-cohomology class.

(1) We say that α is pseudo-effective (psef) if it contains a closed positive (1, 1)-current.
Equivalently, for any smooth closed (1, 1)-form θ ∈ α, PSH(X, θ) , ∅.

(2) We say that α is big if it contains a Kähler current, i.e. for any smooth θ ∈ α, there
exists ε > 0, and u ∈ PSH(X, θ) such that

θ + ddcu ≥ εω0 (as currents).

Equivalently, for any some smooth θ ∈ α there is ε > 0, one has PSH
(
X, θ − εω

)
, ∅.

(3) We say that α is nef if for any θ ∈ α, ε > 0, there exists smooth ψε, s.t. θ+ddcψε > −εω.

Remark 2.17. The set Big(X) ⊂ H1,1(X,R) of big classes is an open convex cone (the big
cone). The set Psef(X) of pseudo-effective classes is a closed convex cone, and one has

Big(X) = Psef(X).

Definition 2.18. Given u, v ∈ PSH(X, θ).

• We say u ⪯sing v (u is more singular than v), if ∃ C > 0, s.t. u ≤ v +C.

• We say u ∼ v (u is as same singular as v), if u ⪯sing v and v ⪯sing u.

The relation ⪯sing here is just a partial order, for instance, on B1 ⊂ C
n and θ semi-positive,

one can not compare u1 = log |z1| and u2 = log |z2| with u1, u2 ∈ PSH(B, θ). The equivalent
relation u ∼ v gives the class [u] = {v ∈ PSH(X, θ), v ∼ u} which is called the singularity type.
As a convention, in this note, we will write [u] ≤ (=)[v] if u ⪯sing (∼) v.

Theorem 2.5 (Demailly’s regularization [Dem92]). Let (X, ω) be a compact Kähler manifold
and let T be a closed positive (1, 1)-current on X. Set α := [T ] = [θ]. Then there exists a
sequence of closed (1, 1)-currents

T j = θ + ddcφ j ∈ α,

with analytic singularities (i.e. locally φ j =
1

m j
log

N j∑
k=1

| f j,k|
2 + O(1)), such that

(1) T j ⇀ T weakly and the potentials decrease: φ j ↘ φ;

(2) T j ≥ −ε j ω with ε j ↓ 0;

(3) the cohomology class is preserved: [T j] = [θ] = α;

(4) for all x ∈ X, ν(T j, x) ≤ ν(T, x) and ν(T j, x)→ ν(T, x).
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Moreover, if the class α is big, then there exists a current

TAS = θ + ddcψ ∈ α

with analytic singularities such that TAS ≥ εω0 for some ε > 0 and some Kähler form ω0 on X;
in particular TAS is a Kähler current with analytic singularities.

A direct consequence is:

Corollary 2.19. Given φ ∈ PSH(X, ω), then there exists a smooth family {φ j} of strictly ω-psh
functions, s.t. φ j ↘ φ. In fact, PSH(X, ω) is the closure of the set Kω of all Kähler potentials
in L1.

Theorem 2.20 (Demailly’s approximation). Let (X, L) be a polarized compact complex man-
ifold and let h be a smooth Hermitian metric on L with curvature ω = Θh > 0. For any
φ ∈ PSH(X, ω) there exist a sequence of sections t j ∈ H0(X, L⊗ j) such that

1
j

log |t j|h j
L1

−−−→
j→∞

φ.

Remark 2.21 (Why this is a big deal). This theorem algebraizes quasi-psh weights: every
ω-psh potential is an L1–limit of Bergman weights built from global sections of high tensor
powers of L.

Definition 2.22 (Ample locus). Let [θ] ∈ H1,1(X), the ample locus of [θ] is defined by

Amp([θ]) = {x ∈ X, ∃ ψ, s.t. θψ is Kähler in a neighborhood of x}

It follows from our previous discussion,

θ is big ⇐⇒ Amp(θ) , ∅.

Moreover, Amp([θ]) is Zariski dense in X (Boucksom [Bou04]), i.e. Amp([θ]) ∩ U , ∅ for
every non-empty Zariski open set.

3. Non-pluripolarMonge-Ampère measures

Let (X, ω) be a compact Kähler manifold and let θ be a smooth closed real (1, 1)-form whose
cohomology class [θ] is big. WLOG, we assume Vol([θ]) :=

∫
X
θn = 1 after normalization. For

any u ∈ PSH(X, θ), we want to define the Monge-Ampère measure of u, that is

MAθ(u) := θn
u = (θ + ddcu)n.



PLURIPOTENTIAL THEORY ON KÄHLER MANIFOLDS 13

3.1. The C∞-case. If u ∈ C∞(X)∩PSH(X, θ), then θu is a smooth form. We can define the MA
measure by

MAθ(u) := θ n
u ,

a smooth positive measure (volume form) on X. The construction is local and multilinear, hence
Stokes’ theorem yields the cohomological identity∫

X
θ n

u =

∫
X
θ n.

Moreover, if u is merely C0, one can still choose a C∞-approximation uk → u uniformly, so
that the MA measure MAθ(u) can be defined by the limit of the MA measure MAθ(uk):

θ n
uk

∗
⇀ θ n

u as k → ∞ in the sense of measure.

We also underline that the limit is independent of the choice of the C∞-approximation, thanks
to Stokes’ theorem:

Lemma 3.1. Let u, v ∈ PSH(X, θ) ∩C∞(X), and let χ be any test function. Then∫
X
χMAθ(u) −

∫
X
χMAθ(v) ≤ C(n)∥u − v∥L∞ · ∥χ∥C2 . (3.1)

Proof. In fact,

MAθ(u) −MAθ(v) = ddc(u − v) ∧
(
θn−1

u ∧ · · · ∧ θn−1
v

)
.

Hence, ∣∣∣∣∣∫
X
χ (MAθ(u) −MAθ(v))

∣∣∣∣∣ = ∣∣∣∣∣∫
X
χddc(u − v) ∧

(
θn−1

u ∧ · · · ∧ θn−1
v

)∣∣∣∣∣
≤

∣∣∣∣∣∫
X
(u − v)ddcχ ∧

(
θn−1

u ∧ · · · ∧ θn−1
v

)∣∣∣∣∣
≤C(n)∥u − v∥L∞ · ∥χ∥C2 ,

which completes the proof. □

Consequently, for any two different approximations, the resulting MA measures are the same.

Example 3.2. Let X = Pn with the Fubini–Study metric ω. In homogeneous coordinates
[Z0 : · · · : Zn], set

ui([Z]) := log |Zi| −
1
2 log

( n∑
k=0

|Zk|
2
)
, φ := max

0≤i≤n
ui.

Then φ ∈ PSH(X, ω) ∩C0(X). Define

φε := ε log
( n∑

i=0

eui/ε
)
, ε > 0.

Each φε ∈ PSH(X, ω) ∩C∞(X), and φε ↘ φ pointwise as ε ↓ 0. Since φ is continuous, the MA
measure MAω(φ) is well-defined, and

MAω(φ) := lim
ε↓0

MAω(φ) = lim
ε↓0

(ω + ddcφε)n in the sense of measure.
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Thus MAω(φ) is a MA measure in the sense of C0 ω-psh functions.

Let Hi = {Zi = 0} be the coordinate hyperplanes. By Poincaré–Lelong, ddcui = [Hi] − ω,
hence on the open region where ui > max j,i u j one has

ω + ddcφ = ω + ddcui = [Hi],

which vanishes on that region (as a current), so MAω(φ) carries no mass there. Consequently,
the measure can only live on the ridge where at least two ui tie. To produce an (n, n)-measure
one needs all n+1 terms to tie, i.e.

|Z0| = · · · = |Zn|.

This locus is the Clifford torus

T n := {[Z] ∈ Pn : |Z0| = · · · = |Zn|} � (S 1)n.

Since φ is invariant under the torus action (S 1)n+1/S 1, the measure is the Haar measure on T n.

3.2. The L∞-case: Bedford–Taylor theory. In this subsection, we explain how the wedge
product is constructed when the potentials are locally bounded, as developed by Bedford and
Taylor [BT76,BT82] onCn, and then globalize to θ-psh functions on compact Kähler manifolds.

Let U ⊂ Cn be open, let T be a positive closed current of bidegree (n − p, n − p) on U, and
let u1, . . . , up be bounded plurisubharmonic functions on U (1 ≤ p ≤ n). Define inductively

T0 := T, Tm := ddc(um Tm−1
)

(1 ≤ m ≤ p),

where the product um Tm−1 is the current acting on test forms φ by

⟨um Tm−1, φ⟩ := ⟨Tm−1, um φ⟩.

Hence, for every smooth compactly supported test form φ,

⟨ddc(umTm−1), φ⟩ = ⟨Tm−1, um ddcφ⟩.

The Bedford–Taylor wedge of u1, . . . , up against T is

ddcu1 ∧ · · · ∧ ddcup ∧ T := Tp.

Equivalently, for every smooth compactly supported function χ (i.e. a test (0, 0)-form) on U,〈
ddcu1 ∧ · · · ∧ ddcup ∧ T, χ

〉
=

〈
ddcu2 ∧ · · · ∧ ddcup ∧ T, u1 ddcχ

〉
. (3.2)

We can verify that each Tm is closed and positive; it suffices to check T1. For closedness, for
any test form ψ,

⟨dT1, ψ⟩ = ⟨ddc(u1T ), dψ⟩ = ⟨u1T, ddc(dψ)⟩ = 0,

since ddcd = d ddc and d2 = 0; hence T1 is closed.

For positivity, let u(k)
1 ↘ u1 be a sequence of smooth psh functions. By Leibniz’ rule and the

closedness of T ,

T (k)
1 := ddc(u(k)

1 T ) = ddcu(k)
1 ∧ T ≥ 0.



PLURIPOTENTIAL THEORY ON KÄHLER MANIFOLDS 15

If ϕ is a smooth strongly positive test form of bidegree (p − 1, p − 1), then

⟨T (k)
1 , ϕ⟩ = ⟨T, ddcu(k)

1 ∧ ϕ⟩ ≥ 0.

Recall that for any (1, 1)-form, the strong positivity is equivalent to positivity, so ddcu(k)
1 ∧ φ

is still strongly positive provided φ is a strongly positive test (p, p)-form. We refer interested
readers to check Demailly’s book [Dem12] for details about the positivity of forms/currents.

Moreover, since the u(k)
1 are uniformly bounded and u(k)

1 → u1 pointwise, by dominated
convergence with respect to the trace measure of T we have

⟨T (k)
1 , ϕ⟩ = ⟨T, u(k)

1 ddcϕ⟩ −→ ⟨T, u1 ddcϕ⟩ = ⟨ddc(u1T ), ϕ⟩ = ⟨T1, ϕ⟩.

Thus T (k)
1 ⇀ T1 weakly, and since the weak limit of positive currents is positive, T1 is positive.

The same argument applies inductively to Tm.

Proposition 3.3 (Local Chern–Levine–Nirenberg inequality). Let U ⊂ Cn be a bounded do-
main and K ⊂⊂ U be a compact set. Fix the standard Kähler form ω0 =

√
−1
π

∑n
j=1 dz j ∧ dz̄ j.

Then there exists C = C(U,K, n) > 0 such that for any u1, . . . , un ∈ PSH(U) ∩ L∞(U),∫
K

ddcu1 ∧ · · · ∧ ddcun ≤ C
n∏

j=1

∥u j∥L∞(U).

Proof. Choose cutoffs χ0, χ1, . . . , χn ∈ C∞c (U) with

0 ≤ χ0 ≤ · · · ≤ χn ≤ 1, χn ≡ 1 on K, χk ≡ 1 on supp ddcχk+1 (0 ≤ k < n).

For 0 ≤ k ≤ n set
Ik :=

∫
U
χk ddcu1 ∧ · · · ∧ ddcuk ∧ ω

n−k
0 .

We claim that there exists A = A(U, {χk}, n) such that for 1 ≤ k ≤ n,

Ik ≤ A ∥uk∥L∞(U) Ik−1. (3.3)

Granting this, iterating gives In ≤ An(∏n
j=1 ∥u j∥∞

)
I0, and since In =

∫
K

ddcu1 ∧ · · · ∧ ddcun

(because χn ≡ 1 on K) and I0 =
∫

U
χ0 ω

n
0 is a fixed constant, the proposition follows with

C := AnI0.

It remains to prove (3.3). Let

S k := ddcu1 ∧ · · · ∧ ddcuk−1 ∧ ω
n−k
0 ,

a positive closed (n − 1, n − 1)-current. Hence

Ik =

∫
U

uk (ddcχk) ∧ S k ≤ ∥uk∥L∞(U)

∫
U
|ddcχk| ∧ S k.

Because ddcχk is smooth with compact support in {χk−1 = 1}, there exists a constant B =
B(χk, ω0) such that the smooth (1, 1)-form inequality ddcχk ≤ Bχk−1 ω0 holds. Wedge with
the positive current S k and integrate to get∫

U
|ddcχk| ∧ S k ≤ B

∫
U
χk−1 ω0 ∧ S k = B

∫
U
χk−1 ddcu1 ∧ · · · ∧ ddcuk−1 ∧ ω

n−(k−1)
0 = B Ik−1.

Combining the above inequalities yields (3.3) with A := B. □
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Remark 3.4. The CLN inequality is still true if uk is only L∞loc.

Example 3.5. In this example, we write r = |z|, and consider the MA measure on Cn.

(1) Let u = log |z|, then (ddcu)n = δ0. Consider the smooth regularization

uε(z) :=
1
2

log
(
r2 + ε2) −−→

ε↓0
log r.

A direct computation gives

ddcuε =
1
2

 1
r2 + ε2 ω0 −

√
−1
π

∂r2 ∧ ∂̄r2

(r2 + ε2)2

 , ω0 :=

√
−1
π

n∑
j=1

dz j ∧ dz̄ j.

Wedge to the top degree (radial rank 1 computation) yields a smooth radial probability
density:

(ddcuε)n =
n! ε2

2n

1
(r2 + ε2)n+1 ω

n
0,

∫
Cn

(ddcuε)n = 1.

Hence (ddcuε)n ∗
⇀ δ0 as ε ↓ 0, i.e.

(ddc log |z|)n = δ0 .

(2) Let u = max{log |z|, 0}, then (ddcu)n = σS 2n−1 . Consider

uε(r) := ε log
(
elog r/ε + e0/ε) = ε log

(
1 + r1/ε)↘ max{log r, 0}.

Each uε is smooth, radial, psh and bounded on compact sets. By a boring computation,

(ddcuε)n = fε(r) dV2n with fε(r) =
1
r

d
dr

(
r

d
dr

uε(r)
)n
· cn,

for an explicit normalizing constant cn chosen so that
∫
Cn(ddcuε)n = 1. A direct differ-

entiation shows fε concentrates at r = 1. More precisely, for any ϕ ∈ C∞c (Cn),∫
Cn
ϕ (ddcuε)n −→

1
Vol(S 2n−1)

∫
S 2n−1

ϕ dσ as ε ↓ 0.

Hence
(ddcu)n = normalized Lebesgue measure on S 2n−1 .

(3) Consider u j =
1
2 j

log
(
1+ |z j

1+z j
2|

2) → u = max{log |z1|, log |z2|, 0} on C2, then (ddcu)2 =

σS 1×S 1 , while (ddcu j)2 ≡ 0. First, u j ∈ PSH(C2) ∩C∞ and

ddcu j =
1
2 j

F∗jωFS , F j = [1, z j
1 + z j

2] : C2 → P1.

Since P1 has complex dimension 1,

(ddcu j)2 =
1

4 j2 F∗j (ωFS ∧ ωFS) ≡ 0.

For the limit, note that for fixed (z1, z2),
1
2 j

log
(
1 + |z j

1 + z j
2|

2) −→ max{log |z1|, log |z2|, 0} in L1.
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As the same as Example 3.2, its MA measure concentrates where

|z1| = |z2| = 1 ⇐⇒ S 1 × S 1,

and by U(1)2–invariance it is the normalized Haar measure on S 1 × S 1:

(ddcu)2 = normalized Lebesgue measure on S 1 × S 1.

Remark 3.6. Example 3.5 (3) shows that u j → u in L1, while 0 = (ddcu j)2 ↛ (ddcu)2. This is
because u 7→ MA(u) is discontinuous in L1-topology. However, u 7→ MAθ(u) is continuous for
monotonic sequence (for u j ↘ u, almost by definition; for u j ↗ u, by [BT82]).

Theorem 3.1 (Comparison principle). LetΩ ⊂ Cn be a bounded domain and let u, v ∈ PSH(Ω)∩
L∞(Ω). Assume lim infz→ξ(u − v)(z) ≥ 0 for all ξ ∈ ∂Ω. Then∫

{u<v}
(ddcv)n ≤

∫
{u<v}

(ddcu)n.

In particular, if (ddcu)n ≤ (ddcv)n in Ω and v ≤ u on ∂Ω, then v ≤ u in Ω.

Theorem 3.2 (Dirichlet problem). Let B := {z ∈ Cn : |z| < 1} and assume u ∈ PSH(B̄)∩L∞(B̄).
Then there exists a unique v ∈ PSH(B) ∩ L∞(B) such that

(1) lim
B∋z→ξ

v(z) = u(ξ) for every ξ ∈ ∂B;

(2) (ddcv)n = 0 in B.

Now, let X be a compact complex manifold and let θ be a smooth, closed, real (1, 1)-form. Fix
an open cover {Uα} and choose smooth local potentials ψα with ddcψα = θ|Uα

. If u ∈ PSH(X, θ)
is bounded, then uα := u + ψα is a bounded psh function on Uα. By Bedford–Taylor theory, we
can define on each chart

MAθ(u)
∣∣∣
Uα

:=
(
ddcuα

)n
.

On overlaps Uα ∩ Uβ, we have ψβ = ψα + h with ddch = 0, hence ddcuβ = ddcuα and therefore(
ddcuβ

)n
=

(
ddcuα

)n. Thus these local measures glue to a global positive Radon measure on X,
denoted

MAθ(u) := (θ + ddcu)n.

By multilinearity of the Bedford–Taylor product and the smoothness of θ, the binomial identity
holds (in the sense of currents):

(θ + ddcu)n =

n∑
k=0

(
n
k

)
θ n−k ∧ (ddcu)k,

where (ddcu)k is the Bedford–Taylor wedge product. Moreover, The BT construction also tells
us: for uk ∈ PSH(X, θ) ∩ L∞(X), the mixed MA measure

θu1 ∧ · · · ∧ θun

is a well-defined probability measure.



18 ZEHAO SHA

Proposition 3.7. Let u, v ∈ PSH(X, θ) ∩ L∞(X). Then:

(1) (Locality) If u = v on an open set U ⊂ X, then 1U MAθ(u) = 1U MAθ(v).

(2) (Monotone convergence) If u j ↘ u is a uniformly bounded sequence in PSH(X, θ), then

(θ + ddcu j)n ∗
⇀ (θ + ddcu)n.

(3) (Cohomological mass) If θu := θ + ddcu ≥ 0 globally, then∫
X
(θ + ddcu)n =

∫
X
θ n.

A direct consequence of Theorem 3.2 is:

Corollary 3.8. Let (X, ω) be a compact Kähler manifold, and let Br be a ball with radius r
small. Suppose u ∈ PSH(X, ω)∩ L∞(X), then there exists a unique vr ∈ PSH(X, ω)∩ L∞(X), s.t.

(1) vr ≡ u in X \ Br;

(2) ωn
vr
= 0 in Br.

Moreover, vr ≥ u and vr ↘ u as r ↓ 0.

Proposition 3.9. Suppose f ∈ C∞(X). Let

Pω( f ) :=
(
sup{u ∈ PSH(X, ω), u ≤ f }

)∗ .
Then Pω( f ) ∈ PSH(X, ω) ∩ L∞(X), and

MAω(Pω( f )) = 1{Pω( f )= f }MAω(Pω( f ))

Proof. We omit the subscript ω for convenience. Let Bϵ ⊂ {P( f ) < f } be a small ball, such that
MA(P( f )) , 0 on Bϵ . Then by Corollary 3.8, there exists a unique vϵ , with MA(vϵ) = 0 in Bϵ

and vϵ = P( f ) in X \ Bϵ . Since vϵ ↘ P( f ) as ϵ ↓ 0 and P( f ) < f on Bϵ , there exists A > 0 small
enough, s.t. vϵ < f for ϵ < A in Bϵ . Hence, vϵ is a candidate in the envelope and vϵ ≤ P( f ).
Consequently, vϵ = P( f ) and MA(P( f )) = MA(vϵ) = 0 which is a contradiction. Our result
then follows from Proposition 3.7 (1) directly. □

3.3. The singular case: BEGZ’s construction. Let u ∈ PSH(X, θ) be arbitrary (possibly
singular). Following [BEGZ10], we define the non-pluripolar Monge–Ampère measure of u by
truncation against the minimal singularity potential Vθ. For each j ∈ N, set

u( j) := max{u, Vθ − j} ∈ PSH(X, θ),

which is locally bounded on Amp(θ). Then the Bedford–Taylor measure

(θ + ddcu( j))n

is well-defined on Amp(θ). We extend this measure by zero to X \ Amp(θ) and set

µ j := 1{u>Vθ− j} (θ + ddcu( j))n.
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By positivity and locality, (µ j) j is increasing in j, hence converges in the weak topology of
measures. We define

⟨(θ + ddcu)n⟩ := lim
j→∞

µ j, MAθ(u) := ⟨(θ + ddcu)n⟩. (3.4)

Proposition 3.10 (Boucksom-Eyssidieux-Guedj-Zeriahi, [BEGZ10]). For every u ∈ PSH(X, θ),
the measure MAθ(u) = ⟨(θ + ddcu)n⟩ satisfies:

(1) (No mass on pluripolar sets) MAθ(u) does not charge pluripolar sets. In particular, it is
supported in Amp(θ).

(2) (Consistency) If u is locally bounded on an open U ⊂ X, then

1U MAθ(u) = 1U (θ + ddcu)n

in the sense of Bedford–Taylor.

(3) (Monotone continuity) If u j ↘ u in PSH(X, θ), then MAθ(u j)
∗
⇀ MAθ(u).

(4) (Mass bound and volume) One always has

0 ≤
∫

X
MAθ(u) ≤ Vol([θ]) := sup

{∫
X
(θ + ddcφ)n : φ ∈ PSH(X, θ), φ ≤ 0

}
.

If u has minimal singularities (e.g. [u] = [Vθ]), then equality holds:∫
X

MAθ(u) = Vol([θ]).

The construction (3.4) is independent of the choice of the representative of [θ] and of the
choice of Vθ. If u is smooth with θu := θ + ddcu ≥ 0, then MAθ(u) = θ n

u . If u is locally bounded
on Amp(θ), then MAθ(u) coincides there with the Bedford–Taylor measure and vanishes on
X\Amp(θ). From now on, we will write θ n

u as the non-pluripolar MA measure of u ∈ PSH(X, θ)
directly. Most properties for MA measures in the BT sense are still true for no-pluripolar
MA measures. The following mixed MA measure inequality was a generalization of [Din09,
Theorem 1.3] from the BT sense to non-pluripolar sense.

Theorem 3.3 ( [BEGZ10]). Let T1, ...,Tn be closed positive (1, 1)-currents, let µ be a positive
measure and assume given for each j = 1, ..., n a non-negative measurable function f j such that

T n
j f j .

Then we have

T1 ∧ · · · ∧ Tn ≥ ( f1 · · · fn)1/n µ. (3.5)

The non-pluripolar MA measure has an lsc property.

Theorem 3.4 (Darvas-Di Nezza-Lu, [DDNL18a]). Let (X, ω) be compact Kähler, θ a big class.
Assume u j, u ∈ PSH(X, θ) with u j ↘ u, f j ≥ 0 be quasi-continuous on X, locally uniformly
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bounded on Amp(θ), and f j ↘ f uniformally on Amp(θ). Then

lim inf
j

∫
X

f j θ
n
u j
≥

∫
X

f θn
u.

Moreover, if

lim sup
j

∫
X
θn

u j
≤

∫
X
θn

u,

then θn
u j

∗
⇀ θn

u in the sense of measure.

Remark 3.11. This result is still valid if we replace u j ↘ u pointwisely with u j → u in Capθ,Φ
2.

An important property for the MA measure w.r.t θ-psh functions with different singularity
types is that:

Theorem 3.5 (Witt Nyström, [Nys19]). Assume u, v ∈ PSH(X, θ) with [u] ≤ [v], then∫
X
θn

u ≤

∫
X
θn

v . (3.6)

Moreover, if [u] = [v], then ∫
X
θn

u =

∫
X
θn

v . (3.7)

Remark 3.12. The comparison property (3.6) is still true if we replace θn
u by θ1,u1 ∧ · · · ∧ θn,un

for θi big and ui ∈ PSH(X, θi), see [DDNL18a].

Usually, the same mass of Monge-Ampère measure generally can not imply the same sin-
gularity type of potential θ-psh functions. For instance, consider θ is Kähler and v = 0,
u = −(− log |z|)α for 0 < α < 1, then ∫

X
θn

u =

∫
X
θn

v .

However, u / v since u is unbounded. To see that, fix p ∈ X. For 0 < α < 1 choose local
holomorphic coordinates z = (z1, . . . , zn) on a ball B := {|z| < r0} centered at p and define

u(z) := −(− log |z|)α on B,

while extending u to a globally defined θ-psh function on X that is bounded on X \ B. After
adding a constant, we may assume u ≤ 0 on X.

Note that the Lelong number of u at p is zero. Since u is radial on B with a single pole at p,
by the radial formula for the residual Monge–Ampère mass [Li20, Proposition A.1], we have

(ddcu)n({p}) =
[
ν(u, p)

]n
= 0.

Put u j := max{u,− j} ∈ PSH(X, θ)∩L∞(X). By Bedford-Taylor theory and Stokes’ theorem, for
any j, ∫

X
θn

u j
=

∫
X
θn.

2We will introduce the notion of capacity later.
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By the BEGZ definition of the non-pluripolar Monge–Ampère measure,

θn
u = lim

j→∞
1{u>− j}θ

n
u j
.

Hence ∫
X
θn

u =

∫
X
θn − lim

j→∞

∫
{u≤− j}

θn
u j
=

∫
X
θn.

Remark 3.13 (Logarithmic singularity fails). If u = λ log |z| near p with λ > 0, then ν(u, p) =
λ and (ddcu)n({p}) = λn > 0 by [Li20, Proposition A.1] again. Hence the above limiting
procedure loses λn units of mass at p, and

∫
X
θn

u =
∫

X
θn − λn <

∫
X
θn.

Lemma 3.14. Let u, v ∈ PSH(X, θ). Then

θn
max{u,v} ≥ 1{u≥v}θ

n
u + 1{u<v}θ

n
v . (3.8)

In particular, if u ≤ v, then

1{u=v}θ
n
u ≤ 1{u=v}θ

n
v . (3.9)

Proof. The only difficult part is to understanding the contact set {u = v}. Define

u j = max{u,Vθ − j}, v j = max{v,Vθ − j}.

For any ε > 0, we have

θn
max{v j,u j+ε}

≥ 1{v j>u j+ε}θ
n
max{v j,u j+ε}

+ 1{v j<u j+ε}θ
n
max{v j,u j+ε}

= 1{v j>u j+ε}θ
n
v j
+ 1{v j<u j+ε}θ

n
u j
.

Since max{v j, u j + ε} ↘ max{v j, u j} ∈ PSH(X, θ), we have θn
max{v j,u j+ε}

∗
⇀ θn

max{v j,u j}
as ε → 0.

Letting ε→ 0, we obtain

θn
max{v j,u j}

≥ 1{v j>u j}θ
n
v j
+ 1{v j≤u j}θ

n
u j
.

By multiplying both side with 1{min{u,v}>Vθ− j}, we see that

1{min{u,v}>Vθ− j}θ
n
max{v j,u j}

=1{min{u,v}>Vθ− j}θ
n
max{v,u}

≥1{v j>u j}∩{min{u,v}>Vθ− j}θ
n
v j
+ 1{v j≤u j}∩{min{u,v}>Vθ− j}θ

n
u j

≥1{v>u}∩{min{u,v}>Vθ− j}θ
n
v + 1{v≤u}∩{min{u,v}>Vθ− j}θ

n
u.

Letting j→ ∞, we obtain the desired inequality. □

We also have the following domination principle.

Theorem 3.6 (Darvas-Di Nezza-Lu, [DDNL18b]). LetΦ ∈ PSH(X, θ) with
∫

X
θn
Φ
> 0. Suppose

u, v ∈ PSH(X, θ) with [u] ≤ [Φ], [v] ≤ [Φ], and∫
X
θn

u =

∫
X
θn

v =

∫
X
θn
Φ.

If θn
u({u < v}) = 0, then u ≥ v on X.
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4. The θ-psh envelope

4.1. Singularity types of θ-psh functions and P-envelope. Let [θ] be big, then there are
plenty of θ-psh functions (even many of them have analytic singularities!).

Define the canonical potential with minimal singularities by

Vθ :=
(
sup{u ∈ PSH(X, θ), u ≤ 0}

)∗
When θ is Kähler, we have 0 ∈ PSH(X, θ). Hence Vθ ≡ 0. Otherwise, Vθ ≤ 0 is usually

regard as the “best” θ-psh function.

Proposition 4.1. Let [θ] be big and let Vθ be defined above, then

(1) Vθ has minimal singularities, i.e. ∀ u ∈ PSH(X, θ), [u] ≤ [Vθ].

(2) Vθ is locally bounded on Amp([θ]).

Proof. Since θ-psh is bounded from above on X, for any u ∈ PSH(X, θ), let ũ = u − supX u ∈
PSH(X, θ). Then ũ ≤ 0 is a candidate of Vθ, and ũ ≤ Vθ. Thus, u ≤ Vθ + supX u implies
[u] ≤ [Vθ].

For x ∈ Amp([θ]), there is ψ ∈ PSH(X, θ), which is smooth in U ∋ x, and [ψ] ≤ [Vθ]. Hence,
there exists C > 0, s.t.

ψ ≤ Vθ +C.

This yields Vθ is bounded from below on U. □

Let f : X → [−∞,+∞] which is not identically ±∞. Define the rooftop θ-psh envelope of f
by

Pθ( f ) :=
(
sup{u ∈ PSH(X, θ), u ≤ f }

)∗ .3 (4.1)

Clear, Vθ = Pθ(0), Pθ( f ) ∈ PSH(X, θ), and for any f1 ≤ f2 we have Pθ( f1) ≤ Pθ( f2). Let c be
any constant, we also have Pθ( f + c) = Pθ( f ) + c.

Proposition 4.2. If f is bounded, then [Pθ( f )] = [Vθ].

Proof. Since −c ≤ f ≤ c for some c > 0, note that,

Vθ − c = Pθ(0) − c = Pθ(−c) ≤ Pθ( f )

≤ Pθ(c) = Pθ(0) + c = Vθ + c,

which completes the proof. □

Proposition 4.3 ( [DDNL18a]). Let u, v ∈ PSH(X, θ). If Pθ(min{u, v}) . −∞, then

θn
Pθ(min{u,v}) ≤ 1{Pθ(min{u,v})=u}θ

n
u + 1{Pθ(min{u,v})=v}θ

n
v . (4.2)

3If we replace u ≤ f in (4.1) by u ≤ f q.e., the obtained envelope are same.
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Proposition 4.4 ( [DDNL18a]). Let u, v ∈ PSH(X, θ). If

θn
u ≤ µ, θn

v ≤ µ,

for some Borel measure µ. Then

θn
Pθ(min{u,v}) ≤ µ. (4.3)

Proof. By replacing µ with 1X\P µ, where P = {u = v = −∞}, we can assume that µ(P) = 0.
Since µ(X) < +∞, the function r → µ({u ≤ v + r}) is monotone increasing. Monotonic
functions have at most countable discontinuous points, and hence for almost every r ≥ 0 we
have µ({u = v + r}) = 0. We set φr := Pθ(min{u, v + r}), and note that φr ↘ Pθ(min{u, v}) as
r → 0. It then follows from Proposition 4.3 that,

θn
φr
≤ 1{φr=u}θ

n
u + 1{φr=v+r}θ

n
v ≤

(
1{φr=u} + 1{φr=v+r}

)
µ ≤ µ,

where in the last inequality we used the fact that µ({u = v+ r}) = 0. Letting r ↘ 0, we arrive
at the conclusion. □

For any u, v ∈ PSH(X, θ), we define the θ-psh envelope with prescribed singularities (relative
to u) by

Pθ[u](v) :=
(

lim
c→+∞

Pθ (min{u + c, v})
)∗
. (4.4)

Or equivalently, we have

Pθ[u](v) :=
(
sup{ψ ∈ PSH(X, θ), ψ ≤ v, [ψ] ≤ [u]}

)∗ . (4.5)

In particular, set
F := {ψ ∈ PSH(X, θ), ψ ≤ v, [ψ] ≤ [u]},

and for c ∈ R write
Ec := Pθ (min{u + c, v}) .

Note that c 7→ min{u + c, v} is non-decreasing, hence c 7→ Ec is non-decreasing as well. Hence
limc→∞ Ec = supc Ec pointwisely.

For each c, by definition of the envelope, we have

Ec ≤ min{u + c, v},

hence Ec ≤ v and Ec ≤ u + c. Therefore Ec ∈ F , and

Ec ≤ sup
ψ∈F

ψ.

Taking the limit in c and then usc regularization yields(
lim

c→+∞
Pθ (min{u + c, v})

)∗
=

(
lim
c→∞

Ec

)∗
≤

(
sup
ψ∈F

ψ
)∗
= Pθ[u](v).

Fix ψ ∈ F and choose C ∈ R such that ψ ≤ u +C. Since also ψ ≤ v, we have

ψ ≤ min{u +C, v}.
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So ψ is a candidate for the envelope, and

ψ ≤ Pθ (min{u +C, v}) = EC ≤ sup
c

Ec.

Taking the supremum over all ψ ∈ F and then usc regularization gives

Pθ[u](v) =
(

sup
ψ∈F

ψ
)∗
≤

(
sup

c
Ec

)∗
=

(
lim
c→∞

Ec

)∗
=

(
lim

c→+∞
Pθ (min{u + c, v})

)∗
.

Proposition 4.5. We have the following properties for Pθ[u](v):

(1) Pθ[u](v) ≤ v;

(2) Pθ[u](v) = Pθ[u](Pθ(v));

(3) If v1 ≤ v2, then Pθ[u](v1) ≤ Pθ[u](v2);

(4) If [u1] ≤ [u2], then Pθ[u1](v) ≤ Pθ[u2](v);

(5) Pθ[u + A](v + A) = Pθ[u](v) + A for A ∈ R;

(6) If [v] ≤ [u], then Pθ[u](v) = v;

Proof. Baby-level exercise. □

Remark 4.6. We are primarily interested in the case where v = Vθ, namely

Pθ[u](Vθ) =
(
sup

{
v ∈ PSH(X, θ)

∣∣∣∣ v ≤ Vθ ≤ 0, [v] ≤ [u]
})∗

. (4.6)

In this situation, we refer to it simply as the P-envelope and denote it by P[u] for convenience.
In particular, for any c ∈ R, we have

Pθ

(
min{u + c,Vθ}

)
∈ PSH(X, θ) and [Pθ(min{u + c,Vθ})] = [u].

In other words, the condition [v] ≤ [u] in (4.6) may be replaced by [v] = [u].

Since u − supX u ≤ 0 is a candidate of the P-envelope, we have [u] ≤ [P[u]]. Generally, the
equality does not hold.

Definition 4.7. We say u ∈ PSH(X, θ) has model type singularity if [u] = [P[u]].

4.2. Non-pluripolar MA measures for the envelope. The following result is a generalization
of Proposition 3.9, which will be used many times in the sequel. In particular, the mass of θn

Pθ( f )

is concentrated on the contact set {Pθ( f ) = f }.

Theorem 4.1. Let f : X → [−∞,−∞] be quasi-continuous4, which is not identically ±∞. Then
Pθ( f ) ∈ PSH(X, θ) and ∫

{Pθ( f )< f }
θn

Pθ( f ) = 0. (4.7)

4Quasi-continuity will be defined in Proposition 5.3 after we introduce the notion of capacity. For now, one
may think of such a function as continuous outside sets of arbitrarily small capacity.
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Lemma 4.8. Let u, v ∈ PSH(X, θ). Then

θn
Pθ(min{u,v}) ≤ 1{Pθ(min{u,v}=u}θ

n
u + 1{Pθ(min{u,v}=v}θ

n
v . (4.8)

Proof. It follows from Lemma 3.14 that,

1{Pθ(min{u,v}=u}θ
n
Pθ(min{u,v}) ≤ 1{Pθ(min{u,v}=u}θ

n
u, 1{Pθ(min{u,v}=v}θ

n
Pθ(min{u,v}) ≤ 1{Pθ(min{u,v}=v}θ

n
v .

Thus, by Theorem 4.1, we have

θn
Pθ(min{u,v}) ≤1{Pθ(min{u,v}=u}θ

n
Pθ(min{u,v}) + 1{Pθ(min{u,v}=v}θ

n
Pθ(min{u,v})

≤1{Pθ(min{u,v}=u}θ
n
u + 1{Pθ(min{u,v}=v}θ

n
v ,

which concludes (4.8) □

The P-envelope preserves the non-pluripolar masses:

Lemma 4.9. Let θ be big and let u ∈ PSH(X, θ). Then∫
X
θn

P[u] =

∫
X
θn

u. (4.9)

Proof. Set

P[u] :=
(

sup
c>0

uc
)∗
, where uc := Pθ(min{u + c, 0}) ∈ PSH(X, θ).

Then (uc)c>0 is non-decreasing (since c 7→ min{u + c, 0} is non-decreasing), and by definition

P[u] = lim
c→+∞

uc =
(

sup
c>0

uc
)∗
.

By Theorem 3.5 we have

lim sup
c→+∞

∫
X
θn

uc
≤

∫
X
θn

P[u].

On the other hand, by Theorem 3.4 we have the weak convergence

θn
uc

∗
⇀ θn

P[u] as c→ +∞,

hence
lim

c→+∞

∫
X
θn

uc
=

∫
X
θn

P[u].

We now show that
∫

X
θn

uc
=

∫
X
θn

u for every c > 0. By construction uc ≤ min{u + c, 0} ≤ u + c.
Choose A ≫ 1 so that u − A ≤ 0. Then

u − A ≤ min{u + c, 0},

hence u − A is a candidate in the envelope and thus u − A ≤ uc. Consequently,

u − A ≤ uc ≤ u + c,

and [u] = [uc]. Applying Theorem 3.5 yields∫
X
θn

uc
=

∫
X
θn

u for all c > 0.

Passing to the limit c→ +∞ gives (4.9). □
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The MA measure of the P-envelope concentrates on the contact set:

Theorem 4.2 ( [DNT21]). Let θ be big and let u ∈ PSH(X, θ). Then

θn
P[u] ≤ 1{P[u]=0}θ

n (4.10)

Proof. It follows from (4.8) that,

θn
uc
≤1{uc=u+c}θ

n
u + 1{uc=Vθ}θ

n
Vθ

≤1{u+c≤Vθ}θ
n
u + 1{P[u]=Vθ}θ

n
Vθ .

We want to let c → +∞. In particular, we note that the first term of the right-hand side
converges to 05 as c → +∞ by the dominant convergence theorem, while the left-hand side
converges to θn

P[u]. Consequently, we have

θn
P[u] ≤ 1{P[u]=Vθ}θ

n
Vθ ≤ 1{P[u]=0}θ

n,

where the last step comes from Proposition 3.10 (4) and Theorem 4.1. □

4.3. The ceiling operator. It is natural to ask: for a given mass 0 < M ≤ Vol([θ]), can we find
the least singular u ∈ PSH(X, θ), with

∫
X
θn

u = M?

We define the ceiling operator:

C(u) := sup
{

v ∈ PSH(X, θ), v ≤ 0, [u] ≤ [v],
∫

X
θn

v =

∫
X
θn

u

}
be the envelope of θ-psh functions has the same (positive) mass as u but no more singular than
u. It is clearly that, C(u) ∈ PSH(X, θ), C(u) ≤ 0 and [u] ≤ [C(u)].

Proposition 4.10. Let u ∈ PSH(X, θ). Then

(1) C(C(u)) = C(u);

(2) C(u) = P[u];

(3)
∫

X
θn
C(u) =

∫
X
θn

u.

Proof. If we can prove P[u] = C(u), thanks to (4.9), we are done with point (3). After subtract-
ing a large constant if necessary, we may assume u ≤ 0. In particular uc ≤ 0 for all c > 0, hence
P[u] ≤ 0. Thus P[u] is an candidate for C(u) and we have

P[u] ≤ C(u).

For the reverse direction, let v be a candidate of the ceiling operator, then∫
{P[u]<v}

θn
P[u] ≤

∫
{P[u]<v}∩{P[u]=0}

θn = 0.

5The set {u + c ≤ Vθ} converges to the polar set of u, which has 0 mass w.r.t non-pluripolar MA measure.
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Note that we have

[P[u]] ≤ [P[v]], [v] ≤ [P[v]].

Moreover, all of these potentials have the same mass, thanks to (4.9). Then by the domination
principle (Theorem 3.6), we find

P[u] ≥ v.

Hence, we obtain P[u] = C(u), which completes the proof of (2) and (3).

For (1), we prove P[P[u]] = P[u]. First, observe that P[P[u]] ≥ P[u] is trivial by definition.
For the reverse inequality, denote

Fu =

{
v ∈ PSH(X, θ) : v ≤ 0, [u] ≤ [v],

∫
X
θn

v =

∫
X
θn

u

}
. Then we have

P[u] = supFu ≥ supFP[u] ≥ P[P[u]],

since FP[u] ⊂ Fu. □

Remark 4.11. In fact, we do not know if P[P[u]] = P[u] if u has null mass. According to the
general philosophy, the P-envelope operator is the correct object only when the non-pluripolar
mass is positive. We will only consider the positive mass in this note.

Definition 4.12 (Model potential). Let Φ ∈ PSH(X, θ). If P[Φ] = Φ and
∫

X
θn
Φ
> 0, we call Φ a

model potential.

Example 4.13. There are plenty of model potentials:

(1) The canonical potential Vθ;

(2) P[u] for u ∈ PSH(X, θ) with positive mass;

(3) Φ ∈ PSH(X, θ with analytic singularities.

4.4. Relative Full mass classes. Let θ be big and let Φ be a model potential.

Definition 4.14. We define

E(X, θ;Φ) :=
{

u ∈ PSH(X, θ) : [u] ≤ [Φ],
∫

X
θn

u =

∫
X
θn
Φ

}
E1(X, θ;Φ) :=

{
η ∈ E(X, θ;Φ) :

∫
X
|Φ − u| θn

u < ∞

}
E∞(X, θ;Φ) := {u ∈ PSH(X, θ) : [u] = [Φ]} .

Potentials in three classes are said to have full mass, finite energy, and minimal singularities
relative to Φ, respectively.
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Remark 4.15. (1) Note that

E∞(X, θ;Φ) ⊂ E1(X, θ;Φ) ⊂ E(X, θ;Φ),

where the first inclusion comes from (3.7) in Theorem 3.5.

(2) Since the non-pluripolar MA measure does not charge pluripolar sets, the integral∫
X
|Φ − u| θn

u

is well-defined, while the difference |Φ − u| is not defined on polar sets of u and Φ.

When Φ = Vθ, we simply write

E (X, θ; Vθ) = E(X, θ),

E1 (X, θ; Vθ) = E1(X, θ),

E∞ (X, θ; Vθ) = E∞(X, θ).

The P-envelope can be used to characterize the relative full mass classes:

Theorem 4.3. [DDNL18a] Let u ∈ PSH(X, θ). Then the following are equivalent:

• u ∈ E(X, θ;Φ);

• [Φ] ≤ [u], and Pθ[u](Φ) = Φ.

• [Φ] ≤ [u], and P[u] = P[Φ]

Corollary 4.16. Let u ∈ PSH(X, θ), and let Φ be a model potential. Then the following are
equivalent:

• u ∈ E(X, θ;Φ);

• P[u] = Φ.

Theorem 4.17. Let θ be big, and let v ∈ PSH(X, θ) be a model potential. If u ∈ E(X, θ; v), then
for any x ∈ X,

ν(u, x) = ν(v, x).

In particular,

• if θ > 0 is Kähler and v = 0, Theorem 4.17 was proven in [GZ05];

• if θ is semi-positive and big, v = 0, Theorem 4.17 was proven in [BEGZ10];

• if θ is big and v is a model potential, Theorem 4.17 was proven in [DDNL18b].

Here we give a brief proof when θ is big and v = Vθ. First observe that [u] ≤ [v], and this gives
ν(u, x) ≥ ν(v, x) for any x ∈ X. Let v = Vθ, write γ = ν(u, x), we want to show ν(Vθ, x) ≥ γ.
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Let U be a neighborhood of x, s.t. θ = ddcρ and ρ << 0 in U, then we have u + ρ < 0 is psh
in U. Then

Vθ + ρ = P[u] + ρ ≤ sup{φ ∈ PSH(U), φ ≤ 0, φ ≤ γ log |z| + A},

thanks to [P[u]] = [u]. Hence,

V − θ + ρ ≤ γ log |z| + A,

which yields ν(Vθ, x) ≥ γ.

Example 4.18. Let Φ = Vθ. Fix x0 ∈ X and a local holomorphic coordinate z centered at x0.
Consider the local models

uα(z) := −(− log |z|)α (0 < α < 1), v(z) := log |z|.

Then the Lelong numbers satisfy

ν(uα, x0) = 0, ν(v, x0) = 1.

Consequently, for their global θ-psh extensions (obtained by patching with a smooth θ-psh
potential outside a small ball), the non-pluripolar Monge–Ampère masses obey∫

X
MAθ(uα) =

∫
X

MAθ(Vθ) (full mass),
∫

X
MAθ(v) <

∫
X

MAθ(Vθ) (not full mass).

5. Relative capacity

5.1. The notion of capacity. Let (X, ω) be a compact Kähler manifold, and let [θ] be a big
class. Suppose E ⊂ X is a Borel set, then the capacity of E is defined by:

Capθ(E) := sup
u

{∫
E
θn

u, u ∈ PSH(X, θ), Vθ − 1 ≤ u ≤ Vθ

}
.

The capacity is a function that sends Borel subsets of X to a non-negative number. However,
the capacity is not a measure due to the lack of additivity.

Proposition 5.1. We have the following properties for the capacity:

(1) If E1 ⊂ E2 are both Borel, then Capθ(E1) ≤ Capθ(E2);

(2) Capθ(X) = Vol([θ]);

(3) For E ⊂ X Borel,
∫

E
θn

Vθ
≤ Capθ(E);

(4) ( [Lu21]) Let [θ1], [θ2] be big, and E ⊂ X Borel. Then there exists f , g : [0,∞)→ [0,∞)
continuous with f (0) = g(0) = 0, such that

Capθ1
(E) ≤ f

(
Capθ2

(E)
)
, and Capθ2

(E) ≤ g
(
Capθ1

(E)
)
.

Proposition 5.2 ( [BEGZ10]). Fix p > 1 and f ∈ Lp(X, ωn), f ≥ 0. Then there exists a constant
C = C(X, ω, θ, p) > 0 such that for all Borel sets E ⊂ X,∫

E
f ωn ≤ C ∥ f ∥Lp(X,ωn) Capθ(E)2. (5.1)



30 ZEHAO SHA

In particular, the measure f ωn is dominated by the square of the θ-capacity:

f ωn ≤ C ∥ f ∥Lp Cap2
θ .

Proposition 5.3 (Quasi-continuous). Suppose u ∈ PSH(X, θ), then for any ε > 0, there is
U ⊂ X open with Capθ(U) < ε, s.t. u is continuous in X \ U.

Proposition 5.4. Let P ⊂ X. Then P is pluripolar if and only if Capθ(P) = 0.

The notion of capacity is the right one when working with the MA measure. We need to
know that the capacity does not distinguish between “big” sets.

Let θ be Kähler. Assume D is a Cartier divisor such that [D] = k[θ] for some k ∈ Z>0.
Choose a smooth Hermitian metric h0 on O(D) whose curvature form is positive and represents
c1(O(D)) = k[θ]. Let sD be the canonical section with div(sD) = D, and set

φ :=
1
k

log ∥sD∥h0 .

After multiplying h0 by a positive constant, we may assume φ ≤ 0 on X. By the Lelong–
Poincaré formula,

ddc log ∥sD∥h0 = [D] − kθ, hence k
(
θ + ddcφ

)
= [D] > 0.

In particular, φ ∈ PSH(X, θ), φ ∈ C∞(X \ D), and {φ = −∞} = D.

Define φ j := max{φ,− j} ∈ PSH(X, θ) and V j := {φ < − j}. Then φ1 ∈ PSH(X, θ) ∩ L∞(X)
with −1 ≤ φ1 ≤ 0, hence (by the bounded case)∫

X
θn
φ1
=

∫
X
θn = Capθ(X).

Moreover, we have

1V1 θ
n
φ1
= 0,

since θφ1 = θφ =
1
k [D] = 0 in X \ V1. Therefore,

Capθ(X) =
∫

X
θn
φ1
=

∫
X\V1

θn
φ1
≤ Capθ(X \ V1) ≤ Capθ(X),

and consequently

Capθ(X \ V1) = Capθ(X).

Thus, removing a small tubular neighborhood of a divisor does not change the capacity. In
particular, the capacity does not distinguish between certain large (proper) subsets of X.

Let Φ be a model potential, then the relative capacity of a Borel subset E is defined by:

Capθ,Φ(E) := sup
{∫

E
θn

u ; u ∈ PSH(X, θ), Φ − 1 ≤ u ≤ Φ
}
.

In the case, Φ = Vθ, the relative capacity recover the classical capacity.

The relative capacity has the same properties of the classical one. More preciously,
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(1) If E1 ⊂ E2 ⊂ X, then

Capθ,Φ(E1) ≤ Capθ,Φ(E2);

(2) A subset P ⊂ X has 0 relative capacity if and only lf P is pluripolar;

(3) The non-pluripolar MA mass of any E ⊂ X is dominated by the relative capacity, that
is ∫

E
θn
Φ ≤ Capθ,Φ(E).

In particular, the relative capacity is also inner regular, that is:

Capθ,Φ(E) = sup{Capθ,Φ(K) : K ⊂ E, K is compact}. (5.2)

To see this, fix ε > 0, there is u ∈ PSH(X, θ), s.t. Φ − 1 ≤ u ≤ Φ and∫
E
θn
Φ ≥ Capθ,Φ(E) − ε.

Since θn
u is an inner regular Borel measure, there exists K ⊂ E compact, such that∫

K
θn

u ≥

∫
E
θn

u − ε ≥ Capθ,Φ(E) − 2ε.

Hence, we have

Capθ,Φ(K) ≥ Capθ,Φ(E) − 2ε.

Taking the supremum over all compact subsets K ⊂ E, we arrive at the conclusion.

Theorem 5.1 (Comparison principle: I). Let u, v ∈ PSH(X, θ), s.t. [v] ≤ [P[u]]. Then∫
{u<v}

θn
v ≤

∫
{u<v}

θn
u. (5.3)

Proof. Step 1: Let u, v ∈ E(X, θ;Φ). Note that max{u, v} ∈ E(X, θ;Φ), since max{u, v} ∈
PSH(X, θ), [max{u, v}] ≤ [Φ], and∫

X
θn
Φ =

∫
X
θn

u ≤

∫
X
θn

max{u,v} ≤

∫
X
θn
Φ.

Therefore, we have ∫
X
θn

u =

∫
X
θn

max{u,v} ≥

∫
{u<v}

θn
max{u,v} +

∫
{u>v}

θn
max{u,v}

=

∫
{u<v}

θn
v +

∫
{u>v}

θn
u

=

∫
{u<v}

θn
v +

∫
X
θn

u −

∫
{u≤v}

θn
u,

which gives ∫
{u<v}

θn
v ≤

∫
{u≤v}

θn
u.

Replacing u by u + ε and letting ε→ 0, we arrive at (5.3) within the class E(X, θ;Φ).
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Step 2: Writing φ = max{u, v}. We observe that u, φ ∈ E(X, θ; P[u]): Clearly, u ∈ E(X, θ; P[u]).
Since [u], [v] ≤ [P[u]], we have [φ] ≤ [P[u]]. Moreover,∫

X
θn

u ≤

∫
X
θn
φ ≤

∫
X
θn

P[u] =

∫
X
θn

u,

which implies φ ∈ E(X, θ; P[u]). We then can apply comparison principle within the class
E(X, θ; P[u]) to u and φ, ∫

{u<v}
θn

v =

∫
{u<v}

θn
φ =

∫
{u<φ}

θn
φ

≤

∫
{u<φ}

θn
u

=

∫
{u<v}

θn
u,

which arrives at (5.3). □

We also have the comparison principle within the full mass class, which is slightly different
from the previous one (see [DDNL18a, Proposition 3.5] for the proof).

Theorem 5.2 (Comparison principle: II). Let Φ ∈ PSH(X, θ), and let u, v ∈ E(X, θ;Φ). Then∫
{u<v}

θn
v ≤

∫
{u<v}

θn
u. (5.4)

5.2. An oscillation estimate. In this subsection, we introduce a generalization of Kołodziej’s
oscillation estimate, due to DDL [DDNL21].

Theorem 5.3 (Kołodziej, [Koł98]). Let (X, ω) be a compact Kähler manifold. Suppose u ∈
PSH(X, ω) ∩ L∞(X) satisfies

ωn
u = fωn (5.5)

for some f ∈ Lp(X) with p > 1. Then there exists C > 0 depending on ω, n, and ∥ f ∥Lp s.t.

oscX u ≤ C.

We first need the following lemm, where the proof can be found in [DDNL18a, Proposition
4.30]

Lemma 5.5. Let Φ be a model potential and let f ∈ Lp(X, ωn) for p > 1. Then for any E ⊂ X,
there exists A > 0, s.t. ∫

E
f ωn ≤ A Capθ,Φ(E)2. (5.6)

Theorem 5.4 (DDL, [DDNL21]). Fix a ∈ [0, 1). Let 0 ≥ Φ ∈ PSH(X, θ) be a model potential
and 0 < f ∈ Lp(X, ωn) for p > 1. Assume u ∈ PSH(X, θ) with supX u ≤ 0, s.t.

θn
u ≤ fωn + aθn

Φ,
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and [Φ] ≤ [P[u]]. Then there exists C > 0 depending on p, n, ω, a, and ∥ f ∥Lp , s.t.

Φ −C ≤ u ≤ 0.6 (5.7)

Proof. Step 1: Denote

g(t) =
(
Capθ,Φ({u < Φ − t})

) 1
n
.

Our goal is to prove for any s ∈ [0, 1], we have

sg(t + s) ≤ bg(t)2. (5.8)

Observe that g : R>0 → R>0 is decreasing, since for t2 < t1, we have {u < Φ− t1} ⊂ {u < Φ− t2},
and g(+∞) = 0 since if t = ∞, we have

∞⋂
t>0

{u < Φ − t} = {u = −∞}.

Let s ∈ [0, 1], taking v ∈ PSH(X, θ) with Φ − 1 ≤ v ≤ Φ, we have

sn
∫
{u<Φ−t−s}

θn
v ≤ sn

∫
{u<(1−s)Φ+sv−t}

θn
v ,

since {u < Φ − t − s} = {u < (1 − s)Φ + s(Φ − 1) − t} ⊂ {u < (1 − s)Φ + sv − t}. Meanwhile,

θn
(1−s)Φ+sv = ((1 − s)θΦ + sθv)n

≥ snθn
v ,

which gives

sn
∫
{u<(1−s)Φ+sv−t}

θn
v ≤

∫
{u<(1−s)Φ+sv−t}

θn
(1−s)Φ+sv.

Note that [(1 − s)Φ + sv − t] = [Φ] ≤ [P[u]], then by the comparison principle (5.3),∫
{u<(1−s)Φ+sv−t}

θn
(1−s)Φ+sv ≤

∫
{u<(1−s)Φ+sv−t}

θn
u ≤

∫
{u<Φ−t}

θn
u,

where the second inequality is due to {u < (1 − s)Φ + sv − t} ⊂ {u < Φ − t}. Hence, we have

sn
∫
{u<Φ−t−s}

θn
v ≤

∫
{u<Φ−t}

θn
u.

Taking supremum among all such v, we arrive at

sng(t + s)n = sn Capθ,Φ({u < Φ − t − s}) ≤
∫
{u<Φ−t}

θn
u.

On the other hand, by our assumption,∫
{u<Φ−t}

θn
u ≤

∫
{u<Φ−t}

f ωn + a
∫
{u<Φ−t}

θn
Φ

≤A Capθ,Φ({u < Φ − t})2 + a
∫
{u<Φ−t}

θn
u,

where the first last inequality is due to (??) and (5.3). Therefore,∫
{u<Φ−t}

θn
u ≤

A
1 − a

Capθ,Φ({u < Φ − t})2 =
A

1 − a
g(t)2n,

which yields (5.8).

6In this situation, we have [u] = [Φ].
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Step 2: We want to prove that for any t > 0 and 0 ≤ s ≤ 1, if g(t) is a decreasing, right-
continuous function satisfying (5.8), with g(+∞) = 0. Then there is T > 0 big enough, s.t.
g(t) = 0, for t > T . The original proof can be founded in [EGZ09, Lemma 2.4].

Taking t0 > 0 large enough s.t. g(t0) ≤ 1/2b. We define a sequence {t j} by induction in the
following way: If f (t0) = 0, we stop here, otherwise, set

t1 := sup
t
{t > t0 : g(t) > g(t0)/2} = sup

t
A1.

Note that t1 ≤ 1+ t0. If not, assume t1 > 1+ t0, then 1+ t0 ∈ A1, and g(t0 + 1) > g(t0)/2. Taking
s = 1 and combing with (5.8), we immediately obtain that

g(t0)/2 < g(t0 + 1) ≤ bg(t0)2,

which gives 1/2b < g(t0). But this contradicts our choice of t0, hence we must have t1 ≤ 1 + t0.

Because g is right continuous, we have g(t1) ≤ g(t0)/2. If not there is ε > 0 small enough,
s.t. g(t1 + ε) > g(t0)/2 thanks to right continuous. This gives ti < t1 + ε ∈ A1, which contradicts
the definition of t1. If s1 = 0, we stop here. Otherwise, define

t j+1 := sup
t
{t > t j : g(t) > g(t j)/2}.

We have t j+1 ≤ 1 + t j and g(t j+1) ≤ g(t j)/2, and this sequence does not grow too fast. Taking
t ∈ (t j, t j+1), by (5.8), we have

(t − t j)g(t) ≤ bg(t j)2 ≤ 2bg(t) · g(t j).

Therefore,

t j+1 − t j ≤ 2bg(t j) ≤ 2b2− jg(t0) ≤ 2− j.

Consequently, the sequence {t j} is bounded from above with the limit

t∞ = t0 + 2.

Step 3: We now can choose T large enough, so that

g(T ) =
(
Capθ,Φ({u < Φ − T })

) 1
n
≤

1
2b
.

Then by Step 2, for any t > T + 2, we have g(t) = 0. Write T∞ = T + 3, we then obtain

Capθ,Φ({u < Φ − T∞}) = 0,

which implies {u < Φ − T∞} is pluripolar. Therefore

u ≥ Φ − T∞ q.e. (thus a.e.).

Thanks to u is usc, we then arrive at our conclusion. □

Remark 5.6. This result is still true if Φ is not a model potential. In this case, we need to put
(??) as an assumption.
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6. Resolution of degenerateMonge-Ampère equations with prescribed singularities

Let (X, ω) be a compact Kähler manifold and let [θ] be a big class. Given a model potential
Φ ∈ PSH(X, θ) (i.e. P[Φ] = Φ ≤ 0 and

∫
X
θn
Φ
> 0), and a Borel measure µ, we study θ

n
u = µ,

[u] = [Φ],
u ∈ PSH(X, θ), (6.1)

in two basic regimes:

(i) µ = f ωn with f ∈ Lp(X, ωn), p > 1;

(ii) µ is a non-pluripolar measure with total mass µ(X) =
∫

X
θ n
Φ.

6.1. Overview. Case 1: If θ = ω is Kähler, f > 0 is smooth, then (6.1) recovers to celebrated
Calabi conjecture, which was solved by Yau.

Theorem 6.1 ( [Yau78]). If ω is Kähler and f > 0 is smooth with
∫

X
f ωn =

∫
X
ωn, then there

exists a unique (up to additive constant) smooth ω-psh u solving

(ω + ddcu)n = f ωn.

Case 2: If θ = ω is Kähler, 0 < f ∈ Lp(X, ω) for p > 1, then (6.1) was solved by Kołodziej.

Theorem 6.2 ( [Koł98]). If ω is Kähler and f ∈ Lp(X, ωn) with p > 1 and
∫

X
f ωn =

∫
X
ωn, then

there exists a unique bounded ω-psh solution u (normalized e.g. by supX u = 0) of

(ω + ddcu)n = f ωn.

Moreover, an a priori L∞ estimate depends only on (X, ω) and ∥ f ∥Lp (Theorem 5.3).

Case 3: If θ ≥ 0 is big, 0 < f ∈ Lp(X, ω) for p > 1 and Φ = Vθ, then (6.1) was solved by
Eyssidieux-Guedj-Zeriahi.

Theorem 6.3 ( [EGZ09]). If θ is smooth, semi-positive and big, and µ = f ωn with f ∈ Lp,
p > 1, then

θn
u = µ

admits a unique bounded solution u with minimal singularities (hence [u] = [Vθ]).

Case 4: If θ is big, µ is any non-pluripolar measure, and Φ = Vθ, then (6.1) was solved by
Boucksom-Eyssidieux-Guedj-Zeriahi.

Theorem 6.4 ( [BEGZ10]). Let [θ] be big and let µ be a non-pluripolar measure with µ(X) =∫
X
θ n

Vθ . Then there exists a unique u ∈ E(X, θ) with minimal singularities solving the non-

pluripolar Monge–Ampère equation

⟨(θ + ddcu)n⟩ = µ.
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6.2. Approximation by supersolution. We first construct the supersolutions.

Theorem 6.5. Given 0 ≤ f ∈ Lp(X, ωn) s.t.∫
X

fωn =

∫
X
θn
Φ.

Then for any b > 1, there exists a unique v ∈ PSH(X, θ) with [Φ] ≤ [v] satisfying

θn
v ≤ b f ωn. (6.2)

Proof. Fix a ∈ (0, 1) and k positive integer. Thanks to Theorem 6.4, we can solve

θn
φk
= ck f ωn + a1{Φ≤Vθ−k} θ

n
max{Φ,Vθ−k}, (6.3)

where ck is a constant, s.t. ∫
X
θn
φk
=

∫
X
θn

Vθ ,

and φk ∈ E(X, θ). In particular, integrating on both sides of (6.3) over X, we have∫
X
θn
φk
= ck

∫
X

f ωn + a
∫
{Φ≤Vθ−k}

θn
max{Φ,Vθ−k}

= ck

∫
X

f ωn + a
(∫

X
θn

max{Φ,Vθ−k} −

∫
{Φ>Vθ−k}

θn
max{Φ,Vθ−k}

)
.

Note that [max{Φ,Vθ − k}] = [Vθ], and φk ∈ E(X, θ), we obtain∫
X
θn

Vθ = ck

∫
X
θn
Φ + a

∫
X
θn

Vθ − a
∫
{Φ>Vθ−k}

θn
max{Φ,Vθ−k},

which implies

ck =
(1 − a)

∫
X
θn

Vθ
+ a

∫
{Φ>Vθ−k}

θn
max{Φ,Vθ−k}∫

X
θn
Φ

.

Hence, ck ↗ C(a) as k → +∞, where

C(a) = a + (1 − a)

∫
X
θn

Vθ∫
X
θn
Φ

.

For a fix 1 > ε > 0, define

ψk = (1 − ε) max{Φ,Vθ − k} + εVθ.

Obviously, ψk ∈ PSH(X, θ) and [ψk] = [Vθ], so that

θn
ψk
≥ (1 − ε)n θn

max{Φ,Vθ−k}.

Then,
θn
φk
≤ C(a) f ωn + a(1 − ε)−nθn

ψk
.

Since f ∈ Lp(X, ωn) for p > 1, it follows from Proposition 5.2,∫
E

f ωn ≤ C Capθ(E)2, (6.4)

for every Borel subsets, where C depends on θ, n, p, ∥ f ∥Lp .
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We claim

Capθ ≤ ε
−n Capθ,ψk

. (6.5)

To see this, taking χ ∈ PSH(X, θ) with Vθ − 1 ≤ χ ≤ Vθ. Then w = (1− ε) max{Φ,Vθ − k}+ εχ ∈
PSH(X, θ) and satisfies ψk − 1 ≤ w ≤ ψk. Therefore,

εn
∫

E
θn
χ ≤

∫
E

(
(1 − ε)θmax{Φ,Vθ−k} + εθχ

)n
≤

∫
E
θn

w ≤ Capθ,ψk
.

Taking the supremum over all such χ gives our claim.

It follows from (6.4) and (6.5),∫
E

f ωn ≤ Cε2n Capθ,ψk
(E).

We then can apply Theorem 5.4 to obtain

φk ≥ ψk −C1 ≥ Vθ −C2 ≥ Φ −C3.

Define

vk, j = P(min{φk, ..., φk+ j}),

then vk, j ≥ Φ −C and vk, j ↘ vk as j→ +∞. Moreover, vk ↗ v as k → +∞, which implies

θn
v ≤ C(a) f ωn ≤ b f ωn,

as desired after choosing a s.t. C(a) ≤ b. □

Remark 6.1. When we are working with a model potential Φ , Vθ, we must have∫
X
θn
Φ <

∫
X
θn

Vθ .

Otherwise, if
∫

X
θn
Φ
=

∫
X
θn

Vθ
, then Φ ∈ E(X, θ), and P[Φ] = Vθ = Φ which is a contradiction.

Theorem 6.6. Given µ a non-pluripolar measure with

µ(X) =
∫

X
θn
Φ.

If

µ ≤ B Capθ,Φ,

then there exists a unique u ∈ E(X, θ;Φ) with supX u = 0 solving θn
u = µ.

Proof. Theorem 5.4 + Theorem 6.5. I will fill in this when I am happy :). □

Theorem 6.7. Given µ a non-pluripolar measure with

µ(X) =
∫

X
θn
Φ.

Then there exists a unique u ∈ E(X, θ;Φ) with supX u = 0 solving θn
u = µ. Moreover, if

µ = f ωn, for 0 ≤ f ∈ Lp(X, ωn) for p > 1, then [u] = [Φ].
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Sketch of the proof. Indeed, we have µ = f ν (see [DDNL18a]) for f ∈ L1(X, ν) and

ν ≤ Capθ,Φ .

Define µ j = c j min{ f , j}ν where c j ≥ 1 is chosen so that µ j(X) = µ(X). Observe that

µ j ≤ c j · j · ν ≤ C · Capθ,Φ .

Then by Theorem 6.6, there exists a unique u j ∈ E(X, θ;Φ), s.t.

θn
u j
= µ j.

Consequently, we can extract a subsequence and we still denote it by {u j} ⊂ E(X, θ;Φ), s.t.
u j → u ∈ PSH(X, θ) in L1, u ∈ E(X, θ;Φ) and u ≤ Φ ≤ 0. Then, by the below Lemma 6.2, we
have

θn
u ≥ µ.

On the other hand, it follows from Theorem 3.5,

µ(X) =
∫

X
θn
Φ ≥

∫
X
θn

u ≥ µ(X).

Hence, we have θn
u = µ. The fact [u] = [Φ] can be obtained by Theorem 5.4. □

Lemma 6.2. Let
{
u j

}
j
⊂ PSH(X, θ) such that θn

u j
≥ f j µ, where f j ∈ L1(X, µ) and µ is a

positive non-pluripolar Borel measure on X. Assume that f j → f ∈ L1(X, µ) in L1(X, µ), and
u j → u ∈ PSH(X, θ) in L1 (X, ωn). Then

θn
u ≥ fµ.

6.3. The Aubin-Yau equation. Let (X, ω) be a compact Kähler manifold and let θ be a big
class. Fix Φ ∈ PSH(X, θ) a model potential, and µ a non-pluripolar measure, we consider the
following equation:

θn
u = euµ. (6.6)

We recall

Theorem 6.8 (Schauder fixed-point theorem). Let X be a Banach space, and let K ⊂ X be a
non-empty, compact and convex set. Then given any continuous mapping F : K → K there
exists x ∈ K such that F(x) = x.

We also need the following tool:

Lemma 6.3. Assume µ is a non-pluripolar measure on X. Let u j, u ∈ PSH(X, Aω) for some
A > 0. Assume u j → u in L1 (X, ωn) and sup j

∫
X

∣∣∣u j

∣∣∣2 dµ < +∞. Then∫
X

∣∣∣u j − u
∣∣∣ dµ→ 0.
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Proof. It follows from [GZ17, Lemma 11.5] that∫
X

(
u j − u

)
dµ→ 0. (6.7)

For each j > 0 we set ũ j :=
(
supk≥ j uk

)∗
. Then ũ j ∈ PSH(X, θ) and ũ j decrease to u pointwise.

Since ũ j ≥ max
{
u j, u

}
, we can have∣∣∣u j − u

∣∣∣ = 2 max
{
u j, u

}
− u j − u ≤ 2

(
ũ j − u

)
+

(
u − u j

)
.

It thus follows from the monotone convergence theorem and (6.7) that∫
X

∣∣∣u j − u
∣∣∣ dµ ≤ 2

∫
X

(
ũ j − u

)
dµ +

∫
X

(
u − u j

)
dµ→ 0.

□

Theorem 6.9. Given µ a non-pluripolar measure of finite mass. Then there exists a unique
u ∈ E(X, θ;Φ) that solves (6.6). Moreover, if µ = f ωn with f ∈ Lp(X, ωn) for p > 1, then
[u] = [Φ].

Proof. Consider

K =
{

u ∈ PSH(X, θ), [u] ≤ [Φ],
∫

X
u ωn = 0

}
.

In fact, K is convex and compact in L1(X, ωn). Define

F : K → K, φ 7→ u ∈ E(X, θ;Φ),

satisfying  θ
n
u = C(φ) eφµ;∫
X

u ωn = 0,

where C(φ) is chosen s.t. ∫
X
θn

u = C(φ)
∫

X
eφdµ =

∫
X
θn
Φ

Thanks to Theorem 6.7, u is unique, so that F is well-defined. We now show F is continuous
in L1-topology. Let φk → φ in L1(X, ωn), and denote F(φk) := uk. Since K is compact, after
extracting a subsequence, we assume uk → u in L1(X, ωn). The goal is to prove that

θn
u = C(φ) eφµ.

From the normalization, we obtain a uniform bound for supk φk, and thus a uniform for eφk . It
follows from [GZ17, Lemma 11.5] that∫

X
eφk dµ→

∫
X

eφ dµ.

Then,

C(φk) =

∫
X
θn
Φ∫

X
eφkdµ

−→

∫
X
θn
Φ∫

X
eφdµ

:= C(φ).

Hence C(φk)eφk → C(φ)eφ in L1(X, µ). By Lemma 6.2, we obtain

θu ≥ C(φ) eφµ.
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Since [u] ≤ [Φ], thanks to Theorem 3.5, we have

C(φ)
∫

X
eφdµ =

∫
X
θn
Φ ≥

∫
X
θn

u ≥ C(φ)
∫

X
eφdµ,

which forces θu = C(φ) eφµ. Consequently, F is continuous in L1-topology.

Applying Schauder fixed-point theorem, there exists φ s.t. F(φ) = φ. Then we have θ
n
φ = C(φ)eφµ∫
X
φ ωn = 0.

Taking φ̃ = φ + log C(φ), we arrive at our solution φ̃ ∈ E(X, θ;Φ). This gives the existence of
(6.6).

For the uniqueness, let u, v ∈ E(X, θ;Φ) be two solutions. Assume {v < u} , ∅, then∫
{v<u}

eudµ =
∫
{v<u}

θn
u

≤

∫
{v<u}

θn
v (by Theorem 5.2)

=

∫
{v<u}

evdµ

<

∫
{v<u}

eudµ,

which implies µ({v < u}). Note that, µ = e−vθn
v , so that θn

v({v < u}). Applying domination
principle (Theorem 3.6), we have v ≥ u on X and {v < u} = ∅. Conversely, we also have
{u < v} = ∅, and therefore u = v on X. □

6.4. Singular KE metrics with prescribed singularities. Solutions of complex Monge-Ampère
equations are linked to existence of canonical Kähler metrics. In particular, we can think of the
solution to

θn
u = e fωn

as a potential with prescribed singularity type and prescribed Ricci curvature in the philoso-
phy of the Calabi-Yau theorem. As an immediate application of the resolution of the Monge-
Ampère equation

θn
u = eu+ fωn

with prescribed singularities [u] = [Φ], we obtain existence of singular KE metrics with pre-
scribed singularity type on Kähler manifolds of general type.

Corollary 6.4. Let X be a smooth projective manifold with ample canonical bundle KX and let
h be a smooth Hermitian metric on KX with θ := Θ(h) > 0. Suppose also that Φ ∈ PSH(X, θ) is
a model potential, has small unbounded locus. Then there exists a unique singular KE metric
he−u on KX with u ∈ PSH(X, θ) and [u] = [Φ].

Remark 6.5. An analogous result also holds on Calabi-Yau manifolds.
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We want to underline that the assumption of the model potential is necessary.

Theorem 6.10. Let ϕ ∈ PSH(X, θ) with positive mass. Suppose for any 0 ≤ f ∈ L∞(X), there
exists u that satisfying

θn
u = fωn

and [u] = [ϕ]. Then ϕ has model type singularity, i.e. [P[ϕ]] = [ϕ].

Proof. Assume [ϕ] , [P[ϕ]], and [ϕ] ≤ [P[ϕ]] strictly, then the inclusion

E(X, θ; ϕ) ⊂ E(X, θ; P[ϕ])

holds also strictly. Note that [u] = [ϕ] ≤ [P[u]], and∫
X
θn

u =

∫
X
θn
ϕ =

∫
X
θn

P[ϕ],

Therefore,

θn
P[ϕ] = 1{P[ϕ]=0}θ

n = f ωn,

where f ∈ L∞(X) that satisfying f ≡ 0 on X \ {P[ϕ] = 0} and f = θn/ωn on {P[ϕ] = 0}.
Therefore, P[ϕ] is the unique solution solves θn

P[ϕ] = fωn in the class E(X, θ; P[ϕ]). Since
P[ϕ] < E(X, θ; ϕ), there is no solution u ∈ E(X, θ; ϕ) that solving θn

u = fωn s.t. [u] = [ϕ]. □

Remark 6.6. The above result is still true if we replace f ∈ L∞(X) by f ∈ Lp(X, ωn) for p > 1.

6.5. Log concavity of volume. In this subsection, we introduce the log concavity of MA mea-
sure, which is a direct consequence of the solvability of complex Monge-Ampère equations
with prescribed singularity type:

Theorem 6.11. Let T1, ...,Tn be closed positive (1, 1)-currents. Then∫
X

T1 ∧ · · · ∧ Tn ≥

(∫
X

T n
1

) 1
n

· · ·

(∫
X

T n
n

) 1
n

. (6.8)

In particular, the map

T 7−→
(∫

X
T n

) 1
n

is concave on the sets of positive currents.

Proof. Assume
∫

X
ωn =

∫
X

T n
j = 1, for 1 ≤ j ≤ n. Assume all T j are big, otherwise there is

nothing need to prove.

Consider a smooth closed (1, 1) form θ j cohomologeous to T j, s.t. T j = θ j + ddcu j for some
u j ∈ PSH(X, θ j). Then we know Pθ j[u j] is a model potential. It follows from Theorem 6.7,
there exists φ j ∈ E(X, θ; Pθ j[u j]) s.t.

(θ j + ddcφ j)n = ωn.
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Hence, ∫
X

T1 ∧ · · · ∧ Tn =

∫
X
(θ1 + ddcφ1) ∧ · · · ∧ (θn + ddcφn) ≥

∫
X
ωn = 1,

thanks to [BEGZ10, Proposition 1.11], and we are done. □

Remark 6.7. The log concavity of volume was first proven by Boucksom–Favre–Jonsson
[BFJ09] when the class is big and nef. After, Boucksom-Eyssidieux-Guedj-Zeriahi [BEGZ10]
showed the case when the current has analytic singularities. The full version was affirmatively
proven by Darvase-Di Nezza-Lu [DDNL21].

7. Uniform C0 estimate for cscK equations

In this section, we introduce a uniform C0 estimate for cscK equations given by Deruelle-Di
Nezza [DDN22].7

7.1. Overview. The constant scalar curvature Kähler (often abbreviated as cscK) metric gen-
eralizes the concept of the Kähler–Einstein metric. And on compact Kähler manifolds, the
average of the scalar curvature R̂ is given by

R̂ =
2nπc1(M) ∪ [ω]n−1

[ω]n

which is independent of the choice of ω.

For a polarized manifold (M, L), the Yau-Tian-Donaldson conjecture states that the existence
of the cscK metric in c1(L) is equivalent to K-stability of (M, L), linking the K-energy’s analytic
behavior to algebraic stability via test configurations [Yau93, Tia97, Don02].

In [Che18], Chen outlined a program for studying the existence problem for cscK metric:
a new continuity path that links the cscK equation to a certain second-order elliptic equa-
tion, apparently motivated by the classical continuity path for Kähler Einstein metrics and
Donaldson’s continuity path for conical Kähler Einstein metrics, and showed the openness.
Further, Chen and Cheng [CC21b, CC21a] established a priori estimates and proved the ex-
istence of the cscK metric under the propness of the K-energy. There has many significant
progress made in the resolution of the YTD conjecture; we refer interested readers to see, for
instance [Sto09], [BDL20], [BBJ21], [BHJ19, BHJ22], etc.

Fix ω, consider ωφ = ω + ddcφ. Set

ωn
φ = eFωn,

then applying ddc log to this equality gives

Ric(ωφ) = Ric(ω) − ddc log
ωn
φ

ωn .

Tracing both sides w.r.t ωφ leads to

R̂ = R(ωφ) = trφ Ric(ω) − ∆φF.

7I will also add the C2 estimate after.
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Therefore, the cscK equation can be written as a system of coupled equations:ω
n
φ = eFωn;

∆φF = trφ Ric(ω) − R̂.
(7.1)

The (classical) idea is then to deform the above system using a continuity path in such a way
that the initial system (at time t = 0) has an obvious solution while the system of equations at
t = 1 is the one for which we want to prove existence of solutions. The goal is to show that the
set S of parameters t ∈ [0, 1] such that a smooth solution exists is open, closed and non-empty.
This would imply in turn that t = 1 is in S , meaning that the desired solution exists.

The closedness part is historically the most difficult. In the framework of the continu-
ity method (specific to this setting) it suffices to prove uniform estimates for cscK poten-
tials. Indeed, such estimates generalize easily to potentials which are solutions of the inter-
mediate equations we have to deal with in the continuity method. The key result that Chen-
Cheng [CC21b] are able to obtain states as follows:

Theorem 7.1. Let (X, ω) be a compact Kähler manifold. Assume ωφ is a cscK metric for
some smooth function φ on X normalized such that supX φ = 0. Then all the derivatives of
φ can be estimated in terms of Ent(φ), i.e. for each k ≥ 0, there exists a positive constant
Ck = C(k,Ent(φ)) such that

∥φ∥Ck ≤ Ck

Here Ent(φ) denotes the entropy of the measure ωn
φ and it is defined as

Ent(φ) =
∫

X
log

ωn
φ

ωn ω
n
φ =

∫
X

FeFωn.

Our goal is to get a priori estimate within the realm of pluripotential theory.

7.2. A priori C0 estimate. We normalized V = Volω(X) = 1. Let φ and F be the solution of
(7.1). Let u be the solution of

ωn
u = b−1eF

√
F2 + 1 ωn, with sup

X
u = 0, (7.2)

where b is set so that
∫

X
ωn

u = 1. Thanks to Yau’s theorem 6.1, the existence of u is guaranteed.
Note that

0 < b =
∫

X
eF
√

F2 + 1 ωn

=

∫
{F<1}

eF
√

F2 + 1 ωn +

∫
{F≥1}

eF
√

F2 + 1 ωn

≤
√

2 e +
√

2 Ent(φ) < +∞,

if Ent(φ) is bounded.

Theorem 7.2. Given ε ∈ (0, 1), there exists C = C(ε, ω, b), s.t.

F + εu − Aφ ≤ C,
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where A > 0 depends only on the lower bound of Ric(ω).

Proof. Suppose Ric(ω) ≥ −Kω, we take A = K + 1 and define

v := F + εu − Aφ.

We calculate that

∆φv = ∆φF + ε∆φu − A∆φφ

= trφ Ric(ω) − R̂ + nε
ωu ∧ ω

n
φ

ωn
φ

− ε trφ ω + A trφ ω − An

≥ −(R̂ + An) + (A − K − φ) trφ ω + nε
ωu ∧ ω

n
φ

ωn
φ

≥ −(R̂ + An) + nεb−
1
n (F2 + 1)

1
2n ,

where the last inequality is given by Theorem 3.3. By the maximum principle, at the maximum
point p of v, we have

nεb−
1
n (F2 + 1)

1
2n (p) ≤ R̂ + An,

which implie F(p) ≤ C(ε,K, b).

Let a, δ ∈ (0, 1), we have either
√

F2 + 1 ≥
b

aδn , or F ≤
√

F2 + 1 ≤
b

aδn .

Hence, we have

ωn
φ = eFωn ≤ 1{√

F2+1≥ b
aδn

}eFωn + 1{√
F2+1≤ b

aδn
}eFωn

≤
aδn

b

√
F2 + 1 eFωn + e

b
aδnωn

= aδnωn
u + e

b
aδnωn

≤ aωn
δu + e

b
aδnωn.

Applying Theorem 5.4, we then obtain

φ ≥ δu −C0.

Taking δ small enough so that Aδ = ε, consequently, we have

F + εu − Aφ = v ≤ v(p) ≤ C(ε, b, ω),

which complete the proof. □

Remark 7.1. We verify the assumption in Theorem 5.4 here. Setting θ = ω > 0, u = φ, Φ = δu
and f = e

b
aδn ∈ Lp(X, ωn) for p ≥ 1. Note that δu is a candidate of P[φ] = 0, then [δu] ≤ [P[φ]].

Consider v ∈ PSH(X, ω), s.t. δu− 1 ≤ v ≤ δu. Define χ = v− δu, then we have −1 ≤ χ ≤ 0, and

Capω,δu = Capωδu .
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Let g = fωn/ωn
δu ∈ Lp(X) for p ≥ 1, it follows from Lemma 5.5,∫

E
f ωn =

∫
E

g ωn
δu ≤ A Capωδu(E)2 = A Capω,δu(E)2,

for any Borel subsets E, which completes the verification.

Corollary 7.2. The functions φ, F, u are uniformly bounded by contant only depends on ω and
Ent(φ).

Proof. Thanks to Theorem 7.2 and supX φ = 0, we now have

F ≤ C − εu.

Thus, ∫
X

e2Fωn ≤ C
∫

X
e−2εuωn

Choosing ε < ν([ω]), then by Skoda’s integrability (Theorem 2.4), we obtain a uniform upper
bound for ∥eF∥L2 . Applying Kołodziej’s estimate (Theorem 5.3) to ωn

φ = eFωn, we have

φ ≥ −C(∥eF∥L2 , ω),

which give a uniform control on ∥φ∥L∞ .

Repeating this trick again,∫
X

e2F
(
F2 + 1

)
ωn ≤

∫
X

e4Fωn ≤ C
∫

X
e−4εuωn.

We choose ε < (2ν([ω]))−1 this time, then by Skoda’s integrability, we obtain a uniform upper
bound for ∥eF

√
F2 + 1∥L2 . Combing with Kołodziej’s estimate, we have a control on ∥u∥L∞ with

the constant depending on ∥eF
√

F2 + 1∥L2 and ω.

By the uniform bounds for ∥φ∥L∞ and ∥u∥L∞ , together with Theorem 7.2, we obtain an upper
bound for F.

It remains to prove the lower bound for F. To finish this, assume first Ric(ω) ≤ Bω. Taking
s = B + 1, then

∆φ (F + sφ) = − R̂ + trφ Ric(ω) + sn − s trφ ω

≤sn − R̂ − trφ ω

≤sn − R̂ − ne−
F
n ,

where the last inequality comes from the arithmetic–geometric mean inequality. Let p be the
minimum point of F + sφ, we than have

sn − R̂ − ne−
F(p)

n ≥ 0,

or equivalently
F(p) ≥ −C.

Therefore,
F + sφ ≥ F(p) − s∥φ∥L∞ ≥ −C̃,
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which gives the desired estimate. □

To be continue...
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