RIGIDITY OF COMPLETE KAHLER-EINSTEIN METRICS UNDER CSCK
PERTURBATIONS

ZEHAO SHA

ABsTRACT. In this paper, we study constant scalar curvature Kihler (cscK) metrics on a com-
plete non-compact Kéhler—Einstein manifold. We give a sufficient condition under which any
cscK perturbation of the Kéhler-Einstein metric remains Kihler—Finstein. As a model case, we
extend Huang-Xiao’s resolution of Cheng’s conjecture if the Bergman metric has constant scalar
curvature on bounded strictly pseudoconvex domains with smooth boundary.

1. INTRODUCTION

1.1. Canonical metrics. A classical question in Kéhler geometry is on finding an especially
“nice” representative of a given Kéhler class [w] for a Kidhler manifold (M, w). Generally, the
Kihler-Einstein metric is the best candidate for such a representative. A Kihler metric w is
called Kidhler-Einstein if the Ricci curvature is proportional to the metric, that is

Ric(w) = Aw,
for some A € R. Through rescaling, we can assume that 4 = 1, 0 or —1.

On compact Kéhler manifolds, the existence of Kéhler-Einstein metrics depends on the sign
of the first Chern class ¢;(M):

(1) If ¢;(M) < 0, M has an ample canonical bundle, a problem solved by Aubin [Aub76]
and Yau [Yau78];

(2) If ¢;(M) = 0, M is Calabi-Yau, as solved by Yau [Yau78];

3) If c;(M) > 0, M is Fano, there are classical obstructions to the existence of Kdhler—
Einstein metrics, going back to Matsushima [Mat57], Futaki [Fut83], and Tian [Tia97].
In a series of papers, Chen—Donaldson—Sun [CDS15a, CDS15b, CDS15c¢] proved that
K-polystability of a Fano manifold is sufficient for the existence of a Kéhler—Einstein
metric, confirming the “K-polystability = KE” direction of the Yau-Tian—-Donaldson
conjecture.

For the non-compact case, some significant progress for the existence of the Kihler-Einstein
metric has been made by Cheng-Mok-Yau [CY80,MY83], Tian-Yau [TY90,TY91], and Gued;j-
Kolev-Yeganefar [GKY 13], etc.

When the canonical bundle K}, is neither trivial, ample, nor anti-ample, the existence of a
Kihler—Einstein metric is precluded, as the first Chern class cannot coincide with the Kéhler

class, making the necessary topological condition unattainable. The constant scalar curvature
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Kihler (often abbreviated as cscK) metric generalizes the concept of the Kdhler—Einstein met-
ric. And on compact Kihler manifolds, the average of the scalar curvature R is given by

2nme (M) U [w]*!
[w]

R =

which is independent of the choice of w.

1.2. YTD conjecture for the cscK metric. For a polarized manifold (M, L), the Yau-Tian-
Donaldson conjecture states that the existence of the cscK metric in ¢(L) is equivalent to
K-stability of (M, L), linking the K-energy’s analytic behavior to algebraic stability via test
configurations [Yau93, Tia97, Don02].

In [Chel8], Chen outlined a program for studying the existence problem for cscK metric:
a new continuity path that links the cscK equation to a certain second-order elliptic equa-
tion, apparently motivated by the classical continuity path for Kéhler Einstein metrics and
Donaldson’s continuity path for conical Kihler Einstein metrics, and showed the openness.
Further, Chen and Cheng [CC21b, CC21a] established a priori estimates and proved the ex-
istence of the cscK metric under the propness of the K-energy. There has many significant
progress made in the resolution of the YTD conjecture; we refer interested readers to see, for
instance [Sto09], [BDL20], [BBJ21], [BHJ19,BHJ22], or more recently [DZ25, BJ25].

1.3. CscK metrics on complete noncompact manifolds. Despite substantial progress on
cscK metrics on compact Kihler manifolds, the complete non-compact case remains far less
understood. A principal analytic obstacle is the general failure of a global d9-lemma in the
non-compact setting, where Hodge decomposition (and related closed-range properties) need
not hold.

Fix a background metric w and consider a cscK perturbation w, = w + V-1 A0y with poten-
tial ¢. Together with (a priori unknown) volume ratio F, the coupled cscK system reads
n _ ,F n
Wy, =e" W,

R (1.1)
A F = =R + try Ric(w),

whose solvability on certain complete manifolds yields a cscK metric of scalar curvature R.
Note that Kédhler—Einstein metrics also solve (1.1). On compact manifolds, if a cscK metric
is cohomologous to a Kédhler—FEinstein metric, then it must be Kéhler—Einstein. HBy contrast,
the complete non-compact case is far less understood: there is no general rigidity principle that
forces cscK metrics to coincide with Kdhler—Einstein ones.

Question 1.1. Can one give a sufficient condition under which every cscK perturbation of a
complete Kédhler-Einstein metric is again Kdhler—Einstein?

Motivated by the above, we establish a rigidity result for complete Kédhler—Einstein metrics
with negative scalar curvature under cscK perturbations. Our main result reads as follows.
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Theorem 1.2. Let (M, w) be a complete Kihler-Einstein manifold with negative scalar cur-
vature. Suppose there exists ¢ € C*(M) with sup,, ¢ < oo defines a complete cscK metric
Wy =W+ \/—_lﬁégo such that Ric(w,) is bounded from below and the ratio of the volume form
W/ W, is bounded from above. If

e (M, w) is parabolic, or

e (M, w) is non-parabolic with the bottom of the L?-spectrum of the Laplacian A;(A,,) > 0,
and for a fixed point p € M, there exist constants Cy > 0 and 0 < 6 < V4;(A) such that,

for all r > O,
f |(,D|2 wn < CO eZ(Sr,
BZr(p)\Br(p)

then w,, is Kihler-Einstein.

Remark 1.3 (Calabi-Yau case). When the background metric is Calabi-Yau, rigidity under
cscK perturbations is much clearer (see Proposition 4.2).

We will recall the parabolicity in detail in Section 4: a complete Riemannian manifold is
nonparabolic iff it admits a (minimal) positive Green’s function, and parabolic otherwise. Also,
we will see later that the potential ¢ is w-subharmonic. It is therefore reasonable to work within
the subclass of Kihler potentials ¢ with sup,, ¢ < +oo.

Recall that a complete Riemannian manifold is non-parabolic if it admits a minimal positive
Green’s function, and parabolic otherwise. In our framework, we show that the perturba-
tion potential ¢ is w-subharmonic. It is therefore natural to restrict to Kéhler potentials with
sup,, ¢ < oo; throughout we fix the normalization sup,, ¢ = 0.

1.4. Bounded strictly pseudoconvex domains as a model case. Let Q c C" be a C* bounded
strictly pseudoconvex domain for £ > 7. In [CY80], Cheng and Yau proved that there is a
unique complete Kéhler-Einstein metric on £ constructed by a global strictly plurisubharmonic
defining function. This leads to an interesting question: Does there exist a complete cscK metric
that is not Kdhler—Einstein on bounded strictly pseudoconvex domains?

On bounded strictly pseudoconvex domains, there are two natural types of complete Kihler
metrics: the Bergman metric wg, and metrics w,, arising from strictly plurisubharmonic defining
functions: defining functions of  naturally produce a class of complete Kihler metrics, and
any two such metrics differ by a term of the form V—1ddu for some potential u. We will
discuss this in Section 5 for details. For these two types of metrics, we obtain:

Theorem 1.4. Let Q c C" be a bounded strictly pseudoconvex domain with Q € C2.

(1) If w, is cscK and 0Q € C 8 then w, coincides with the unique Kéhler-Einstein metric
constructed by Cheng-Yau.

(2) If the Bergman metric wgp is cscK, then wp is Kihler—Einstein. Moreover, if 0Q € C*,
then Q is biholomorphic to the unit ball.
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Item (2) of Theorem 1.4 provides a new perspective on extending Huang—Xiao’s resolution
of Cheng’s conjecture [HX21, Theorem 1] to Bergman metrics with constant scalar curvature.
We will elaborate this in Section 5.

2. PRELIMINARIES

2.1. Notations. Let (M", w) denote an n-dimensional complete Kihler manifold. In local co-
ordinates (z', ..., z"), the Kiihler metric w can be expressed in the form

w = V—lg,»jdzi@)d_j,
where we adopt the Einstein summation convention. We use d; and d; as shorthand notations

9 i

% and L

for respectively, and denote by (g‘j ) the inverse matrix of (gij).

Given two tensors A and B of type (m, n), their Hermitian inner product with respect to g is

defined by
<A, B>w = gil.il e gin.;ngkll—l ... gkml*mAillimBilll]W;,

and the corresponding norm of A is given by IAlz) =(A,A),.

Let V denote the Levi-Civita connection associated with the Kahler metric w. The covariant
derivatives are expressed locally as

V.=V, V;

7= Va],_.
For any vector fields X, Y, Z, W on M, the Riemann curvature is defined by
Rm(w)(X,Y,Z, W) = (VxVyZ = VyVxZ = VixyiZ, W), .
In local coordinates, the components of the Riemann curvature are given by
Riji = —0:0;g;5 + 8" (3kgiq) (0igp;) :
The Ricci curvature is defined as the trace of the Riemann curvature tensor:
Ric(w) = V=1R;;d7' ® dz’, where R;; = —8;0;log (det(gy)) -
The scalar curvature is then obtained by tracing the Ricci curvature with respect to g:

R(w) = tr,, Ric(w) = g"Ry;.

Note that for C2-functions, the covariant derivative V,V ; coincides with the partial derivative
0,05, since the mixed Christoffel symbols I';; vanish identically on Kéhler manifolds.
For any C™-function f : M — R, the gradient vector field is defined by
Vf =g (if - 0;+05f - 5:).

The complex Hessian of f is given by V-180f, and the Laplacian operator is defined as the
trace of the Hessian:

Aof = tr, (V=180f) = g70,0;f.
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2.2. Omori-Yau’s maximum principle. We now introduce Omori-Yau’s generalized maxi-
mum principle on non-compact manifolds.

Proposition 2.1 (Omori [Omo67],Yau [Yau75]). Let (M, w) be a complete Kéhler manifold.
If the sectional curvature of w is bounded from below, then for any function u € C?(M) with
sup,, u < +oo, there exists a sequence of points {zx}rey C M satisfying

() lim u(z) = supu, (2) lim [Vu(zl, = 0, (3)lim sup V=180u(z) < 0,
—00 M —00

k—o0

where the third inequality holds in the sense of matrices.

Remark 2.2. If the assumption of bounded sectional curvature is replaced by a lower bound of
the Ricci curvature, then condition (3) can be modified to

(3") lim sup A, u(z;) < 0.

k— o0

2.3. Bounded geometry. Recall that the injectivity radius at a point x € M is the maximum
radius r of the ball B, in the tangent space T M for which the exponential map exp, : B, —
exp,(B,) C M is a diffeomorphism. The injectivity radius of M is the infimum of the injectivity
radius at all points in M.

Definition 2.3. Let (M, w) be a complete Kédhler manifold and let k > 0 be an integer. We say
(M, w) has C*-quasi-bounded geometry if for each non-negative integer [ < k, there exists a
constant C; > 0 such that

sup [V Rm(w)|, < Cy, 2.1
M

where V' is the covariant derivative of order /. Moreover, if (M, w) has a positive injectivity
radius, then we say (M, w) has C*-bounded geometry.

Remark 2.4. It is clear that if a complete Kihler manifold has C°-bounded geometry, then the
generalized maximum principle is valid.

3. BASIC ESTIMATES FOR THE cSCK METRIC

Let (M", w) be a complete Kiihler-Einstein manifold of C°-bounded geometry with negative
scalar curvature. In our context, it is necessary to assume the background metric has at least C°-
bounded geometry to use the generalized maximum principle. Suppose there exists a complete
cscK metric @ of C°-bounded geometry on M with R(®) = R(w) = —n, then there is a function
F such that

" = ef W, 3.1
and

A(DF =n-1try w. (32)
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We can verify that
R(®) = trg Ric(®)
= —tr; V—1881log (i—:) + try Ric(w)
=-ApF —tryw
= —n.

We will always assume the Kihler-Einstein metric has Einstein constant —1, and the cscK
metric has the scalar curvature —n if without making any further mention.

We first see the following property for the volume form of a cscK metric.

Lemma 3.1. Suppose M is a complete Kédhler manifold. Let w be a complete Kéhler-Einstein
metric and let @ be a complete cscK metric with R(®) = R(w). If Ric(®) is bounded from below
and the ratio of the volume forms w"/@" is bounded from above, then the following inequality
holds:

" > w". (3.3)

Moreover, if the equality holds at any interior point p € M, then ® = w on M.

Proof. Assume R(®) = R(w) = —n. Taking u = «"/@" > 0, we compute
Aglogu = Ay log (W"/@")
=trpaw—n
> nu% -n,
where the last inequality follows from the arithmetic-geometric inequality.

Then we obtain

2
Asu  |Vul 1
Aslogu = —— — == 2 nur —n,
u u
which leads to
[Vul2 |
Agu — © > nunt! — nu.
u

Since u is bounded from above and Ric(®) is bounded from below on €2, by the generalized
maximum principle, there exists a sequence {z,} C €, such that

0 > lim sup Agu(z,) > n lim u%”(za) —n lim u(z,).

a—00

This implies sup,, u < 1, yielding the desired inequality.
Observe that,

Aglogu > nur —n > log u.
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Suppose there is a point p € M such that u(p) = sup,,u = 1. By the maximum principle, we
have u = 1 in M and @" = «". Then (3.2) yields tr; w = n. Consequently, we have ©® = w
thanks to the equality case of the arithmetic-geometric inequality. O

Remark 3.2. Note that the inequality (3.3) implies that the volume form of the Kihler-Einstein
metric is the smallest among all cscK metrics. Therefore, we have F > 0 in (3.1) and (3.2).

The following trace-type inequality was originally from Yau’s famous C2-estimate [Yau78].
In general, this inequality holds for any two Kéhler metrics w and & if the holomorphic bisec-
tional curvature of w is bounded from below.

Lemma 3.3 (Yau [ Yau78]). There exists a constant B depending on the holomorphic bisectional
curvature of w such that
tr,, Ric(®)

Aglog (tr, @) > Btrg, w
tr, W

34)

We then see the following quantitative estimate. In fact, if @ = w + V—100¢p for some
potential ¢ with [|¢||cz < M for some M > 0, then the cscK metric @ is bi-Lipschitz to the
Kahler-Einstein metric w.

Proposition 3.4. Let (M", w) be a complete Kiihler-Einstein manifold of C°-bounded geometry.
Suppose @ is a complete cscK metric of C°-bounded geometry on M such that the volume form
ratio @"/w" = ef € C*(M). If

sup tr, @ < +oo,
M

then there exist constant C > C’ > 0 depending on the dimension 7, the lower bound of
holomorphic bisectional curvature of w and ||F]|¢c2(s), such that

Cwo<w<Cw on M. 3.5)
Proof. It follows from (3.1),
Ric(®) = —(n + )w — V-180F. (3.6)
Then, (3.4) becomes
tr,, Ric(&
Aglog (tr, @) > Btrg w — ;cfw)
tr, 8
nn+1)+ A, F
=B tro w + — .
tr, w

Thanks to the Cauchy-Schwarz inequality, we have

(tr, D)(tr, w) = (877) (8"2ur) =

So there exists a constant C; > 0 depending on n and ||[AF||;~, such that

Aglog (tr, @) > Btrg w — Cy trg w. 3.7



8 ZEHAO SHA

Taking C, = (=B + C; + 1)/(n + 1), then it follows from (3.7),
Ag (log (tr, @) — CoF) > trg, w — Cr(n + Dn.
Since log (tr,, @) — C,F is bounded from above on M and @ has C°-bounded geometry, by
the generalized maximum principle, there exists a sequence {z,}, such that

0 > limsup A (log (tr, @) — C2F) (z4) = ]}im try, w(z,) — Co(n + Dn,

which implies
gim try, w(z,) < Co(n + Dn.

If z, —» p € M, then taking normal coordinates centered at p such that w is identity and @ is
diagonal, we have

o w(p) = ) &'(p) < Ca(n+ D,

This yields at point p, for any k£,

%@=w@szywsgmmm (3.8)

From (3.1), we have

[ [2ip) = "™ < empo” (3.9)

Combining (3.8) and (3.9), for any k, we obtain

Hi g’ﬁ(P) n—1 supg F
— 2 < C 1 Pa =
[Tz 8i(P) S

where we recall that C; depends on n, the lower bound of holomorphic bisectional curvature of

gu(p) = (3.10)

w, ||F||z~ and ||AF|| ~. In particular, from (3.10), we have
tr, @(p) = ) &u(p) < Cs.
k

If {z,} does not converge to any interior point, then by the generalized maximum principle, we
have

1
try, w(z,) < Co(n+ Dn + —.
o'

Taking normal coordinates centered at z, and following the same approach as above, we obtain

1
tr, (z,) < C3 + 0(—).
1%
Let @ — oo, we have

lim tr,, &(z,) < Cs.
a—>00
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Hence for any x € M, we obtain
log (tr, @) (x) — CoF(x) < szp (log (tr,, @) — C>F)
< (11_1:1010 log tr, @(z,) — C» (}1_13)10 F(z,)
< log(C3),
thanks to ' > 0. This implies
s:;ptrwd) < Cy, 3.11)

where C, depends on the same factors as C3. Now, if we choose a normal coordinate at any
point x € M such that w is identity and @ is diagonal, it follows from (3.3) and (3.11),

~ [1: 8
= 20Cs,
“ [T 8
which implies
w > Csw. (3.12)
This gives the desired result. O

4. CscK METRICS ON A COMPLETE KAHLER-EINSTEIN MANIFOLD

On compact manifolds, the 90-lemma guarantees that any two Kihler metrics in the same
cohomology class differ by a global potential. On a non-compact complete manifold, however,
the absence of a global 9-lemma prevents one from fixing a Kihler class in the usual sense. To
obtain a tackleable framework, we fix a background Kéhler metric w and consider only those
perturbations of the form

Wy = W+ \/—_165<,0,

so that w, remains cohomologically “tethered” to w via a global potential.

Consider a complete Kihler-Einstein manifold (M, w). Assume there is ¢ € C*(M) with
sup,, ¢ < +oo defines a complete cscK metric w,, := w + V-10d¢ which satisfies

w, = efw", 4.1)

and

Ay F =n—tr,, w, 4.2)
for some F € C*(M). Without loss of generality, by adding a constant to ¢, we always assume
sup,, ¢ = 0.

The cscK metric forms an important class of canonical metrics in Kihler geometry, gener-
alizing Kéhler-Einstein metrics. It is clear that a Kdhler-Einstein metric is a cscK metric, but
conversely, it is not true. On compact Kédhler manifolds, we have:

Proposition 4.1 (A well-known fact). Let (M, w) be a compact Kédhler manifold. Suppose that
2rci(M) = AJw] for some constant A where ¢;(M) is the first Chern class of M. If w is a cscK
metric, then w is Kihler-Einstein.
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In this section, we investigate an analogue of the rigidity result above on complete non-
compact Kihler-Einstein manifolds, in the setting where M admits a complete cscK metric w,
that is asymptotically Kéhler-Einstein. More precisely, we say a complete cscK metric w,, is
asymptotically Kéhler-Einstein, if

(1) (Weak version) the ratio of the volume forms W, /w" — 1 asymptotically;
(2) (Strong version) the potential function ¢ satisfies V—1d¢ — 0 asymptotically.

The strong version implies the weak version obviously. However, we expect that, on a complete
Kihler-Einstein manifold with suitable geometric control, the weak asymptotics already force
the rigidity among cscK perturbations: It should suffice to require asymptotic equivalence of
the volume forms rather than of the metrics themselves, since the volume form determines the
Ricci curvature.

It is not difficult to see that if the background metric w is Calabi-Yau, then the decay of F is
enough to show the cscK metric is also Calabi-Yau. Moreover, we do not even need to require
that the cscK metric is cohomologous to the Calabi-Yau metric.

Proposition 4.2. Let (M, w) be a complete Calabi-Yau manifold. Suppose @ is a complete
cscK metric on M with R(®) = 0, and that @" = e w" for some F € C*(M). If, for any point
pPEM,

rlgg IFllcoanBp.ry = O,

then @ is Calabi—Yau.

Proof. Since Ric(®) = Ric(w) — V=100F and Ric(w) = 0, tracing with respect to @ gives
0 = R(@) = trgy Ric(@) = —A, F,
which implies F is harmonic. As F — 0 at infinity and @ is complete, the maximum principle

yields F' = 0, hence @" = " and Ric(®) = Ric(w) = 0. O

Therefore, only the case of negative scalar curvature needs to be considered more concretely.
For the cscK metric w,, with negative scalar curvature that is asymptotically Kahler-Einstein in
the strong sense, we obtain:

Proposition 4.3. Let (M, w) be a complete Kiihler-Einstein manifold of C’-bounded geometry
with negative scalar curvature. Suppose there is a ¢ € C*(M) such that w, = w + V-180¢
defines a complete cscK metric and R(w,) = R(w). If for any p € M, we have

lim [lellc2amp.ry = 0,

then ¢ = 0 and w, = w.

Proof. It follows from (4.2),
Au, F =470
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Since lim, e ll¢llc2(an\(p.r) = 0, We also have
rll)n; ||F||CO(M\B(p,r)) =0,

thanks to (3.1). By the maximum principle, we have F = ¢ on M. Substituting this into (3.1)
yields

(w+ V=108p)" = ¢fw". (4.3)

Since w is complete of C’-bounded geometry and sup,, |¢| < oo, by the generalized maximum
principle, there exists a sequence {z;} C Q such that

w" (w + V-18d¢)"
wn

1=1lim— > lim
k—oo (" (Zk) T koo

(Zk) = SPu ¥

This implies sup, ¢ < 0. A symmetric argument gives infy, ¢ > 0, forcing ¢ = 0 on M.
Consequently, w, is Kéhler-Einstein, which completes the proof. O

In fact, Proposition 4.3 shows that if a Kdhler—Einstein metric and a cscK metric are asymp-
totically equivalent in the strong sense, then they must coincide. Note that the cscK equations
(4.1) and (4.2) depend only on the second derivatives of the potential ¢, so that the C°-control in
the associated complex Monge—Ampere equation (4.1) has historically been the most delicate
step. In our convention, a C?-decay hypothesis at infinity already entails the C°-decay of ¢.
Hence, it already presupposes this delicate part, and is somehow too strong.

Chen-Cheng’s breakthrough [CC21b] provides a priori estimates for the coupled cscK sys-
tem (1.1) in terms of the entropy

mwpfffw.
M

On complete manifolds, this quantity may be infinite. If Ent(¢) < oo and Vol(M, w) = oo, F
must satisfy certain global integrability, which might force some decay of F' at ends with infinite
volume. A decay assumption for F, together with a growth restriction on the volume, can
make Ent(¢) < oo, which could allow us to try to adapt Chen-Cheng’s technique on complete
manifolds. Moreover, an optimal decay rate of F can serve as a sufficient condition to separate
cscK metrics from Kihler—Einstein metrics within the solution set of (1.1) if the fixed class is
cohomologous to the first Chern class.

4.1. Parabolicity and rigidity of complete Kéhler-Einstein metrics. In this subsection, we
study the case by weakening the C? decay of ¢ in Proposition 4.3 by an L? control. To realize
this purpose, we need first to introduce the parabolicity.

The Green’s function plays a significant role in the analysis of elliptic PDEs on complete
Riemannian manifolds. Malgrange [Mal56] first proved that the Laplace operator admits a
symmetric Green’s function. Afterward, Li and Tam [LT87] gave a constructive proof for the
existence of the Green’s function on any complete Riemannian manifold. In particular, the
existence of a positive minimal Green’s function allows one to classify complete manifolds
into two categories: parabolic manifolds and non-parabolic manifolds.
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Definition 4.4 (Paracolicity). We say a complete Riemannian manifold (M, g) is non-parabolic
if it admits a positive minimal Green’s function. Otherwise, (M, g) is said to be parabolic.

It is well known that, on a parabolic manifold, all subharmonic functions bounded from
above are constant (see, for instance, Grigor’yan [Gri99] for more discussion on parabolicity).
It follows from Lemma 3.1,

1/n
Aw¢:trww¢—n2n(wg/w") ! -n>0. 4.4)

Therefore, we immediately obtain:

Proposition 4.5. Let (M, w) be a complete Kihler-Einstein manifold. Suppose there exists
¢ € C(M) with sup,, ¢ < oo such that w, defines a complete cscK metric such that Ric(w,) is
bounded from below, and the ratio of the volume form «w"/ W, is bounded from above. If (M, w)
is parabolic, then w, is Kihler-Einstein.

Remark 4.6 (Quadratic volume growth implies parabolicity). A standard volume growth cri-

0 r
f Vol Bp,r) 7=

then M is parabolic. In particular, if Vol B(p,r) < C r* for all sufficiently large r, the integral

terion asserts that if

diverges and M is parabolic (see also [CY75]).

We now turn to the non-parabolic case. In particular, a positive lower bound of the spectrum

implies non-parabolicity: if
V£ "
A(Bo) = O;&fiIég(M) % .
M

then (M, w) admits a minimal positive Green’s function G(x, -) with G(x,y) — 0 as d(x,y) — oo
for each fixed x. Moreover, Cheng and Yau gave a necessary condition for 4; > 0: if the
manifold has polynomial volume growth, then 4; = 0. Recall that non-parabolicity and the
positivity of the bottom of the spectrum are stable under bi-Lipschitz changes of the metric.

On a complete Riemannian manifold (M, g) with positive spectrum, we have some nice decay
estimates for the minimal positive Green’s function on the annular area:

Lemma 4.7 (Li-Wang [LWO1]). Let M" be a complete manifold with 1;(A) > 0. Then the
minimal positive Green’s function G(p, -) with pole at p € M must satisfy the decay estimate

f G*(p,y)dy < Ce 2 Vh®r G*(p,y)dy 4.5)
Br1(p\B(p])

B(p)\B1(p)

for r > 1, where C > 0 only depends on 4;(A) > 0.

In what follows, we therefore assume 4;(A,) > 0, which allows us to exploit quantitative
estimates for the Green’s function G.
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Theorem 4.8. Let (M", w) be a complete Kidhler—Einstein manifold with 4,(A,) > 0. Assume
there exists ¢ € C*(M) with sup,, ¢ < +oo such that w, = w + V-10dyis a complete cscK
metric whose Ricci curvature is bounded from below, and the volume ratio w"/ W, is bounded
from above. Fix p € M and write A,(p) := B,,(p) \ B.(p). If there exist constants Cy > 0 and
0 < 6 < VA,(A) such that, for all > 0,

f lp w" < Coye®, (4.6)
A (p)

then w, is Kédhler-Einstein.

Proof. Since we only use the Laplacian A, in this proof, we omit the subscript w for simplicity.
We also underline that the constant C in the calculation may vary step by step. Let G be the
minimal positive Green’s function on M, and let r >> 1. Consider a cut-off function  with
n=11n B,(p), n = 0 outside B,,(p), and

I 1
r

72

for some constant C > 0 (see [Li12, Chapter 6]). Suppose sup,, ¢ = 0. Define ¥ = ngp, then by
the Green’s identity, we have

Mm:—j‘G@wmmwwu>
B,

V=1 _ _ _ _
=— G (0g0 A On + @don + 0n A dp + 778090) A

n B

V=1 _ _
:—f GgoAnw”—f GnAp " — —— G(690A8n+6‘77/\6g0)/\w”_1
BZr BZr n BZr

V=1 _ _
= f G(pAna)"—f GnAp " + —f ¢(3GA67]+677/\6G)/\60"_1
BZr BZr n B2r
=L+L+ 13,
where we use integration by parts in the fourth equality.

For I, we apply Cauchy-Schwartz inequality and Holder’s inequality,

13:—

V=1 _ _
f ¢(6GA8U+677/\6G)/\w”_1
n A,

A

C 1/2 1/2
< —( f ol w") ( f VG w") .
r\Jda, A,

For any x € A,, take p = r/4 so that p ¢ B(x, p). By Cheng-Yau’s gradient estimate [CY75],

schﬂwmwmw

VG(p, »)| IVG(p, )| C
——— < sup —————— < V2n—-1+ —.
G, 0 sy 1G(pso)l r
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We then decompose A, into annular area B(p,r + k + 1) \ B(p, r + k) of thickness 1 and apply
Li-Wang’s decay estimate (4.5), which gives

-1 , 1/2
I < CCy e&[—“” + %)(f VGP w")
r r A,

INANES .
SCe5’(—+—2)- Zf IG* "
r r k=0 Br+k+1 \Br+k

L] 12
< C - NU®)r 1 + 1 Z o 2 VU Bk
B ro )\ &

< Cs (I’_l + I‘_z).

For I, recall that 0 < A, which yields I, < 0.

For I, we adapt a similar approach with I, since ¢ < 0, we then obtain

1 1 1/2 1/2
I = f GoAn w" < c(— + —2)(f |l w") (f IGI* cu”) <C (r-l + r-2).
A, rr A, A,

Combining the above estimates, we immediately have,

w(p)l < C(r'+r?) >0,

as r — oo. This gives ¢(p) = 0 = sup,, ¢. Together with (4.4), we have ¢ = 0 on M for
some constant C, thanks to the strong maximum principle. Consequently, w, = w is Kihler-
Einstein. O

Remark 4.9. Although (4.6) looks like a growth bound, exponential volume growth implies
decay in the averaged L? sense. Moreover, the conclusion remains valid if the annular L? mass
grows only sub-exponentially.

5. THE cscK METRIC ON BOUNDED STRICTLY PSEUDOCONVEX DOMAINS

In this section, we discuss the cscK metric on bounded pseudoconvex domains in C". Note
that such domains always admit a complete Kihler-Einstein metric of negative scalar curvature,
thanks to [MY83].

5.1. The Cheng-Yau metric. Let Q C C" be a C* bounded strictly pseudoconvex domain.
In [CY80], Cheng and Yau investigated complete Kéhler metrics of the form

w, = — V-1881log p,

where p is a strictly plurisubharmonic defining function for the domain Q = {p > 0}. They
derived the local expression for the curvature tensor:

R = - (gijgkz' + giigkj) +0 (lpl_l) :

Notably, the metric w behaves asymptotically like a Kidhler-Einstein metric with Einstein con-
stant —(n + 1) near the boundary 0€.
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The Kihler-Einstein metric on a strictly pseudoconvex domain is constructed using the Fef-
ferman defining function p of class C* for k > 8. Let w denote this metric, defined by

w = —V—-18d1ogp.

If the cscK metric is also defined by a global strictly plurisubharmonic defining function p, then
there exists a positive function u € C*~'(Q) satisfying u = 1 + o(1) near 0Q such that p = up.
Consequently, the perturbed metric satisfies

&= w+ V-1,

where ¢ = —logu. For a detailed discussion of the regularity of u, see [KraO1l, Chapter 3.1].

Proposition 5.1. Let Q c C" be a bounded strictly pseudoconvex domain with C*-boundary,
for k > 8. Then there is no complete cscK metric @ given by a C*-defining function 5 unless @
is Kéhler-Einstein.

Proof. Assume there exists a complete cscK metric @ defined by a defining function p. Let w
be the Kihler-Einstein metric on Q given by the defining function p. As discussed previously,
this implies the metric perturbation

O=w+ V—l@ggo,
where ¢ = —log u for some u € C¥"'(Q) such that 5 = up. The method is similar to the proof

of Proposition 4.3, and the only difference is that d9¢ — O.

However, note that the determinant relationship
det (gi; + ai(?jgo) = det (gl-j-) - det ((517 + gil_alajga) = el det (g,-;)
holds. Moreover, we have g = O(|o|) and 9,059 € C¥-3(€2), which implies that g7d,05 vanishes
asymptotically near Q. Thus,
e’ = det ((517 + giialc');go) — det ((’)};) =1 as z-—-9Q.

Combining with ¢ = 0 on 02, we complete the proof. O

5.2. The Bergman metric. Besides w,, the Bergman metric wp is another important complete
Kihler metric on C? bounded pseudoconvex domain. Let Q be a bounded pseudoconvex do-
main in C" and let A%(Q) be the space of holomorphic functions in L*(Q). It is clear that A%(2)
is a Hilbert space. The Bergman kernel K(z) on Q is a real analytic function defined as

K@ =) lpi@f,  VzeQ,

=1
where {¢ j}‘;.‘; , 18 an orthonormal basis of A?(Q) with respect to the L? inner product. Since the
Bergman kernel is positive and independent of the choice of any orthonormal basis [KraO1] on
bounded domains, we then can define the Bergman metric by

wp = V-1801og K.
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The Bergman metric is a complete real analytic Kéhler metric, with the real analytic property
inherited from the Bergman kernel.

A key observation is that, on a bounded pseudoconvex domain Q with C? boundary, the
Bergman metric wpg behaves asymptotically like a Kéhler—Einstein metric near a strictly pseu-
doconvex boundary point.

Proposition 5.2 (Krantz-Yu [KY96]). Let Q2 ¢ C" be a bounded pseudoconvex domain and let
p € 0Q be a C? strictly pseudoconvex point. Then

lim |Ric(wp) + wp|(z) =0, and limR(wpg) = —n.
-p Z-p

This leads to a natural and fundamental question: under what conditions does this identity

hold on a general pseudoconvex domain?

The simplest and most striking example is the unit ball B” c C", where the Bergman metric
is exactly Kédhler—Einstein everywhere. But more generally, when can we say that the Bergman
metric wp is Kdhler—Einstein? Indeed, both the KE metric and the Bergman metric are invariant
under biholomorphisms, and the boundary behavior of wp can be understood throughout the
geometry of the boundary, which is determined by the defining function. However, the interior
curvature behavior of the Bergman metric remains far less known.

To access this interior behavior, one promising idea is to study the automorphism group of Q.
If we can find a biholomorphism that maps a point near the boundary, where wg behaves like a
Kihler-Einstein metric, into the central region of the domain, the invariance properties of both
metrics allow us to carry the asymptotic Kéhler—FEinstein behavior into the interior. In this way,
the understanding of the automorphism group becomes a crucial key in exploring the interior
geometry of wg. This problem was explicitly posed by Yau in the 1980s, who conjectured the
following:

Conjecture 5.3 (Yau [SY94]). A bounded domain €, which is not a product domain admits a
complete Kédhler—Einstein Bergman metric if and only if Q is homogeneous.

Recall that a bounded domain Q is said to be homogeneous if its automorphism group Aut(€2)
acts transitively; that is, for any x, y € Q, there exists a g € Aut(Q2) such that g(x) = y. Notably,
the celebrated ball characterization theorem by Rosay [Ros79] and Wong [Won77] implies that
any C? bounded homogeneous domain must be a ball. The product domain is automatically
excluded in this case since the corner of the product boundary has only C° regularity.

A more tractable case of Yau’s conjecture is when Q is strictly pseudoconvex with C*-
boundary. In particular, Cheng asked:

Conjecture 5.4 (Cheng [Che79]). Let Q c C" be a bounded strictly pseudoconvex domain
with C* boundary. If wp is Kihler-Einstein, then € is biholomorphic to the ball.
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In 2021, Huang and Xiao answered Cheng’s conjecture affirmatively.

Theorem 5.5 (Huang-Xiao [HX21]). The Bergman metric of a bounded strictly pseudoconvex
domain Q with C*-boundary is Kéhler-Einstein if and only if the domain is biholomorphic to
the ball.

Given the rigidity of this result, it is natural to ask whether similar characterizations can be
obtained under weaker curvature conditions.

Question 5.6. Can we characterize bounded domains whose Bergman metric has constant
scalar curvature?

Let G := det(wp) denote the determinant of the Bergman metric. The Bergman invariant
function defined by B(z) := G(z)/K(z) is invariant under biholomorphic maps. A significant re-
sult regarding the Bergman invariant function, established by Diederich, states that if a bounded
strictly pseudoconvex domain has C2-boundary, then B tends to constant when we approach the
boundary.

Proposition 5.7 (Diederich [Die70]). Let Q c C" be a bounded pseudoconvex domain and let
p € 0Q be a C? strictly pseudoconvex point. Then

+ D'
lim B(z) = (n+ '2
-p n!

We then have the following statement, as an extending for Huang and Xiao’s resolution of
Cheng’s conjecture.

Proposition 5.8. Let Q be a bounded strictly pseudoconvex domain in C" with C? boundary and
let wp be the Bergman metric. If wp has constant scalar curvature, then wp is Kédhler-Einstein.
Moreover, if 0Q € C*, then Q is biholomorphic to the ball.

Proof. Note that, for the Bergman metric wg,
Ric(wp) + V-1881og B = —wg (5.1)
Taking trace with respect to wg, we have
A,zlogB=0 in Q,

which implies log B is harmonic with a constant boundary value (Proposition 5.7). By the
maximum principle, it follows that log B must be constant throughout €, specifically
+ 1)'n"
fog 8 = log V7).
n!
Combining this with the characterization in [FW97, Proposition 1.1], we conclude that wp is
Kihler-Einstein. The final statement then follows immediately from Theorem 5.5. O
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